利用特征距离信息引导决策融合的多模态生物特征识别方法

来源 :科学技术与工程 | 被引量 : 0次 | 上传用户:xwp1024
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的决策层融合作为识别系统最末端的融合层次,具有信息量不足的缺点,对于各模态分类性能差异较大的系统,识别率低且可靠性差。提出了一种基于特征距离信息的决策层融合方法,应用于包含虹膜、手掌静脉和手指静脉的多模态生物特征识别系统。以置信度作为权重,通过权重来探索不同模态生物特征识别的性能差异,实现了有效特征信息的提取,并且提高了系统的抗干扰能力。该方法充分考虑了权重因子与特征距离信息和模态分类性能参数之间的复杂关系,将模态的决策偏好通过置信度转化为定量表征,不仅使各模态权重因子的求解更具科学性,而且提高
其他文献
针对目前胶囊内镜(WCE)自动检测方法需要对每种病灶设计对应的识别算法以及识别准确率不高的问题,设计一种基于卷积神经网络的息肉与溃疡辅助诊断算法。与传统检测算法相比,卷积神经网络可自动学习病灶图像特征,实现更强泛化能力,更高准确率和效率。该方法针对具体WCE图像,首先评价图像R、G、B通道携带信息的特征;其次,分析全局直方图均衡化、伽玛变换和拉普拉斯变换对提升图像对比度的效果,选择其中表现最佳者与
溶解气氡浓度异常为可靠地震前兆,通过对历史观测数据进行建模,预测溶解气氡未来趋势,是快速检测溶解气氡浓度异常、研究震-氡机制的前提。溶解气氡浓度数据为典型的时间序列数据,传统的时间序列预测技术主要为自回归(AR)方法和自回归滑动平均(ARMA)方法。这些方法以线性方法为主,其拟合精度有限。采用目前最流行的深度学习技术长短期记忆(LSTM)模型对姑咱地震台、西昌地震台和雅安地震台一段时间内连续观测的
针对低层特征对图像内容描述不够精确而导致现勘图像分类准确率不高的不足,提出一种融合局部聚合描述符(vector of locally aggregated descriptors, VLAD)和全局特征的现勘图像分类算法。首先,分别提取HSV颜色直方图和局部二值模式(local binary pattern, LBP)特征作为图像全局特征;然后,对现勘图像进行密集采样,提取每个子区域的尺度不变特征