论文部分内容阅读
摘要:倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统。本文以控制方法中最常用的PID控制算法进行研究,研究模糊PID控制的控制规律,并对其作出仿真。
关键词:倒立摆、数学模型、PID
Abstract: inverted pendulum system is nonlinear, strong coupling, many variables and natural not stable system. This paper to control method is the most commonly used in PID control algorithm is studied, the fuzzy PID control the control law, and to make the simulation.
Keywords: inverted pendulum, mathematical model and PID
中图分类号:G623.5文献标识码:A 文章编号:
1、倒立摆系统简介
倒立摆是典型的高阶非线性不稳定系统。小车可以自由地在限定的轨道上左右移动,小车上的倒立摆一端被绞链在小车顶部,另一端可以在小车轨道所在的垂直平面上自由转动,控制目的是通过电机推动小车运动,使倒立摆平衡并保持小车不和轨道两端相撞(图1为单级倒立摆的模型本论文的研究对象)。在此基础上,在摆杆的另一端再绞连摆杆,可以组成二级、三级倒立摆系统。该系统是一个多用途的综合性实验装置,它和火箭的飞行及机器人关节运动有许多相似之处,其原理可用于控制火箭稳定发射,且对揭示定性定量转换规律和策略具普遍意义。
图1单级倒立摆原理结构图
2、控制方法中的典范—PID
PID控制是众多控制方法中应用最为广泛也是最为容易被人们所掌握的一种控制方法。随着科学技术的不断发展,控制技术的不断成熟,传统的PID控制已被人们注入了先进的控制思想。使得PID控制方法不断丰富,控制性能不断加强。
目前工程上应用的PID控制方法主要有:一般PID控制、自适应PID控制、模糊PID控制。下面对他们的控制思想和特点略作介绍。
2.1一般PID控制
PID控制是由反馈系统偏差的比例(P)、积分(I),微分(D)的线性组合构成的反馈控制律。由于它具有原理简单、直观易懂、易于工程实现、鲁棒性强等一系列优点,多年以来它一直是工业过程控制中应用最广泛的一类控制算法。早期的PID控制是由气动或液动、电动硬件仪表实现的模拟PID控制器。二十世纪七十年代以来,随着计算机技术飞速发展和应用普及,由计算機实现的数字PID控制不仅简单地将PID控制规律数字化,而且可以进一步利用计算机的逻辑判断功能,开发出多种不同形式的PID控制算法,使得PID控制的功能和实用性更强,更能满足工业过程提出的各种各样的控制要求。PID控制虽然属于经典控制,但是至今仍然在工业过程控制中发挥着重要作用,今后随着计算机技术的发展和进步,数字PID控制一定还会有新的发展和进步。理想模拟P功控制器的输出方程式为:
2-1
式中,Kp为比例系数,Kp比例度互为倒数关系,Ti为积分时间;Td为微分时间;U(t)为PID控制器的输出控制量;e(t)为PID控制器输入的系统偏差量。后面第将做进一步的说明。
2.2自适应PID控制
2.2.1 自适应控制的概念
自适应控制系统是一个具有一定适应能力的系统,它能够认识环境条件的变化,并自动校正控制动作,使系统达到最优或次优的控制效果。
2.2.2 功能及特点
作为较为完善的自适应控制应具有以下三个方面的功能:(1)系统本身可以不断地检测和处理信息,了解系统当前状态;(2)进行性能准则优化,产生自适应控制规律;(3)调整可调环节(控制器),使整个系统始终自动运行在最优或次最优工作状态。
自适应控制是现代控制的重要组成部分,它同一般反馈控制相比具有如下突出特点:(1)一般反馈控制主要用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象;(2)一般反馈控制具有强烈抗干扰能力,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能够消除状态扰动引起的系统误差,而且还能够消除系统结构扰动引起的系统误差;(3)一般反馈控制系统的设计必须事先掌握描述系统特性的数学模型及其环境变化状况,而自适应控制系统设计则很少依赖数学模型全部,仅需要较少的验前知识,但必须设计出一套自适算法,因而将更多的依靠计算机技术的实现;(4)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统。
2.3 模糊PID控制
模糊PID既继承了PID的特点又加进了模糊控制的思想。因此他综合了PID和模糊控制的特点,优越性十分明显。下面对模糊控制略作说明。
2.3.1 模糊控制的基本概念
为了更清楚地说明模糊控制的思想,我们首先看几个基本概念。
(1) 论 域
我们都知道,具有某种特定属性的对象的全体,称为集合。所谓论域,就是指我们所研究的事物的范围或所研究的全部对象。论域中的事物称为元素。论域中一部分元素组成的集合称作子集。
(2) 隶属函数
普通集合常用列举法、表征法和特征函数方法表示。所谓特征函数,就是把属于集合的元素的特征函数值定为1,把不属于集合的元素的特征函数值定为0的表示方法。设有集合A,其特征函数记作,则
2-2
可见,对于普通集合而言,其特征函数只有两个值:1或0,表示属于或不属于。模糊数学的创始人札德教授对模糊集合给出如下定义:设给定论域X,X到[0,1]闭区间上的任一映射都确定X的一个模糊子集
即
2-3
2.3.2 模糊控制的基本原理
模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机智能控制,其基本概念是由美国加利福尼亚大学著名教授查德(L.A.Zadeh)首先提出的。经过20多年的发展,模糊控制理论及其应用研究均取得重大成功。模糊控制的基本原理框图如图2-1所示,它的核心部分为模糊控制器。模糊控制器的控制规律由计算机程序实现,其过程描述如下:微机经中断采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E,一般选误差信号E作为模糊控制器的一个输入量。把误差信号E的精确量进行模糊化变成模糊量。误差E的模糊量可以用相应的模糊语言表示,得到误差E的模糊语言集合的一个子集e,再由e和模糊控制规R(模糊算子)根据推理的合成规则进行模糊决策,得到模糊控制量u。
图2模糊控制原理框图
3、总结
在对其研析中。得出了几条PID参数的整定规律:
(1)增大比例系数一般将加快系统的响应速度,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变差。
(2)增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。
(3)增大微分时间有利于加快系统的响应速度,使系统超调减小,稳定性增加,但系统对扰动的抑制能力减弱。
在测试时,可以参考以上参数对系统控制过程的影响超势,对参数调整实行先比例,后微分,再微分的整定步骤。即先整定比例部分,将比例参数,由小变大,并观察相应的系统响应,直至得到反应快超调小的响应曲线。
4、参考文献
[1]自动控制原理宋丽蓉 主编 机械工业出版社
[2]新型PID控制及应用陶永华 尹怡欣 葛芦生编著机械工业出版社
[3]应用先进控制技术高东杰 谭杰 林红权编著国防工业出版社
[4] MATLAB应用技术 王忠礼 段慧达 高玉峰编著清华大学出版社
[5]控制系统的数字仿真与CAD李国勇 谢克明编著 电子工业出版社
关键词:倒立摆、数学模型、PID
Abstract: inverted pendulum system is nonlinear, strong coupling, many variables and natural not stable system. This paper to control method is the most commonly used in PID control algorithm is studied, the fuzzy PID control the control law, and to make the simulation.
Keywords: inverted pendulum, mathematical model and PID
中图分类号:G623.5文献标识码:A 文章编号:
1、倒立摆系统简介
倒立摆是典型的高阶非线性不稳定系统。小车可以自由地在限定的轨道上左右移动,小车上的倒立摆一端被绞链在小车顶部,另一端可以在小车轨道所在的垂直平面上自由转动,控制目的是通过电机推动小车运动,使倒立摆平衡并保持小车不和轨道两端相撞(图1为单级倒立摆的模型本论文的研究对象)。在此基础上,在摆杆的另一端再绞连摆杆,可以组成二级、三级倒立摆系统。该系统是一个多用途的综合性实验装置,它和火箭的飞行及机器人关节运动有许多相似之处,其原理可用于控制火箭稳定发射,且对揭示定性定量转换规律和策略具普遍意义。
图1单级倒立摆原理结构图
2、控制方法中的典范—PID
PID控制是众多控制方法中应用最为广泛也是最为容易被人们所掌握的一种控制方法。随着科学技术的不断发展,控制技术的不断成熟,传统的PID控制已被人们注入了先进的控制思想。使得PID控制方法不断丰富,控制性能不断加强。
目前工程上应用的PID控制方法主要有:一般PID控制、自适应PID控制、模糊PID控制。下面对他们的控制思想和特点略作介绍。
2.1一般PID控制
PID控制是由反馈系统偏差的比例(P)、积分(I),微分(D)的线性组合构成的反馈控制律。由于它具有原理简单、直观易懂、易于工程实现、鲁棒性强等一系列优点,多年以来它一直是工业过程控制中应用最广泛的一类控制算法。早期的PID控制是由气动或液动、电动硬件仪表实现的模拟PID控制器。二十世纪七十年代以来,随着计算机技术飞速发展和应用普及,由计算機实现的数字PID控制不仅简单地将PID控制规律数字化,而且可以进一步利用计算机的逻辑判断功能,开发出多种不同形式的PID控制算法,使得PID控制的功能和实用性更强,更能满足工业过程提出的各种各样的控制要求。PID控制虽然属于经典控制,但是至今仍然在工业过程控制中发挥着重要作用,今后随着计算机技术的发展和进步,数字PID控制一定还会有新的发展和进步。理想模拟P功控制器的输出方程式为:
2-1
式中,Kp为比例系数,Kp比例度互为倒数关系,Ti为积分时间;Td为微分时间;U(t)为PID控制器的输出控制量;e(t)为PID控制器输入的系统偏差量。后面第将做进一步的说明。
2.2自适应PID控制
2.2.1 自适应控制的概念
自适应控制系统是一个具有一定适应能力的系统,它能够认识环境条件的变化,并自动校正控制动作,使系统达到最优或次优的控制效果。
2.2.2 功能及特点
作为较为完善的自适应控制应具有以下三个方面的功能:(1)系统本身可以不断地检测和处理信息,了解系统当前状态;(2)进行性能准则优化,产生自适应控制规律;(3)调整可调环节(控制器),使整个系统始终自动运行在最优或次最优工作状态。
自适应控制是现代控制的重要组成部分,它同一般反馈控制相比具有如下突出特点:(1)一般反馈控制主要用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象;(2)一般反馈控制具有强烈抗干扰能力,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能够消除状态扰动引起的系统误差,而且还能够消除系统结构扰动引起的系统误差;(3)一般反馈控制系统的设计必须事先掌握描述系统特性的数学模型及其环境变化状况,而自适应控制系统设计则很少依赖数学模型全部,仅需要较少的验前知识,但必须设计出一套自适算法,因而将更多的依靠计算机技术的实现;(4)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统。
2.3 模糊PID控制
模糊PID既继承了PID的特点又加进了模糊控制的思想。因此他综合了PID和模糊控制的特点,优越性十分明显。下面对模糊控制略作说明。
2.3.1 模糊控制的基本概念
为了更清楚地说明模糊控制的思想,我们首先看几个基本概念。
(1) 论 域
我们都知道,具有某种特定属性的对象的全体,称为集合。所谓论域,就是指我们所研究的事物的范围或所研究的全部对象。论域中的事物称为元素。论域中一部分元素组成的集合称作子集。
(2) 隶属函数
普通集合常用列举法、表征法和特征函数方法表示。所谓特征函数,就是把属于集合的元素的特征函数值定为1,把不属于集合的元素的特征函数值定为0的表示方法。设有集合A,其特征函数记作,则
2-2
可见,对于普通集合而言,其特征函数只有两个值:1或0,表示属于或不属于。模糊数学的创始人札德教授对模糊集合给出如下定义:设给定论域X,X到[0,1]闭区间上的任一映射都确定X的一个模糊子集
即
2-3
2.3.2 模糊控制的基本原理
模糊控制是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机智能控制,其基本概念是由美国加利福尼亚大学著名教授查德(L.A.Zadeh)首先提出的。经过20多年的发展,模糊控制理论及其应用研究均取得重大成功。模糊控制的基本原理框图如图2-1所示,它的核心部分为模糊控制器。模糊控制器的控制规律由计算机程序实现,其过程描述如下:微机经中断采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E,一般选误差信号E作为模糊控制器的一个输入量。把误差信号E的精确量进行模糊化变成模糊量。误差E的模糊量可以用相应的模糊语言表示,得到误差E的模糊语言集合的一个子集e,再由e和模糊控制规R(模糊算子)根据推理的合成规则进行模糊决策,得到模糊控制量u。
图2模糊控制原理框图
3、总结
在对其研析中。得出了几条PID参数的整定规律:
(1)增大比例系数一般将加快系统的响应速度,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变差。
(2)增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。
(3)增大微分时间有利于加快系统的响应速度,使系统超调减小,稳定性增加,但系统对扰动的抑制能力减弱。
在测试时,可以参考以上参数对系统控制过程的影响超势,对参数调整实行先比例,后微分,再微分的整定步骤。即先整定比例部分,将比例参数,由小变大,并观察相应的系统响应,直至得到反应快超调小的响应曲线。
4、参考文献
[1]自动控制原理宋丽蓉 主编 机械工业出版社
[2]新型PID控制及应用陶永华 尹怡欣 葛芦生编著机械工业出版社
[3]应用先进控制技术高东杰 谭杰 林红权编著国防工业出版社
[4] MATLAB应用技术 王忠礼 段慧达 高玉峰编著清华大学出版社
[5]控制系统的数字仿真与CAD李国勇 谢克明编著 电子工业出版社