论文部分内容阅读
在富氏碳笼的结构表达式中 ,不同聚合度的六边形碳环的数目 x,y,z,u是由不定方程 6 x+5 y+4 z+3u=3n- 12 0决定的 ,该文给出了方程的求解方法。在求解过程中 ,证明了稳定结构的富氏碳笼必须满足二个条件 ,我们将它称为偶碳定则和 6 0碳定则。解的结果表明 ,当 n>6 0时 ,方程是多解 ,每一组解对应一种富氏碳笼分子 ,不同解对应的分子构型不同 ,是同分异构现象 ,n愈大 ,其解组愈多 ,也就是说 ,富氏碳笼 Cn 的结构变体也愈多
In the structural expression of Fu carbon cage, the number of hexagonal carbon rings with different degrees of polymerization x, y, z, u is determined by the indefinite equation 6 x + 5 y + 4 z + 3u = 3n-12 0 , This paper gives the solution of the equation. In the process of solving, we prove that the stable carbon nanotubes must satisfy two conditions, which we call the even carbon and the sixty carbon. The solution results show that when n> 60, the equation is multi-solution, and each solution corresponds to a kind of carbon-rich cage molecule. The different solutions correspond to different molecular configurations and are isomeric phenomena. The larger n is, The more unmarshaled, that is, the more structural variants of the Cf Cn