一类递推数列通项公式的求解策略

来源 :河北理科教学研究 | 被引量 : 0次 | 上传用户:rogerfederersxt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数列是高中数学的基本内容这一,由数列的递推关系确定其通项公式是数列中经常考查的内容,而这也是数列的一个难点内容.对于一些较复杂的变系数递推关系,往往可以转化为 an+1=f(n)an+g(n)(f(n)≠ 0)这种统一的形式.下面我们就来探究这类递推数列如何求出其通项公式.
其他文献
本文章给出了一般式方程的两直线位置关系的简明判断条件及其应用.
本文主要给出根式方程的三种解法,其中共轭因式法与构图法解法新颖、实用性强.
本文对2020年天津高考数学第14题的解法、变式和推广进行了一些探究,拓展了思维,开阔了视野,得到了一些精彩的结论.
本文给出了 一道圆锥曲线定点问题的两种解法,并进行推广,最后得到了相应的结论和启示,对中学数学教学有一定的参考价值.
本文探究一类涉及| f(x1)-f(x2)|≥(≤)m|x1-x2|的函数相关问题的求解策略.
定义:三角形任何两个角的外角平分线与第三个内角平分线的交点称为三角形的旁心,它是旁切圆的圆心,一个三角形有三个旁心.连接三角形的三个旁心而成的三角形称为旁心三角形.
期刊
培养学生核心素养是当前数学教学的热门话题.课堂是培养学生数学学科核心素养的主阵地,变式探究可培育学生的数学核心素养,由一道椭圆基本性质的题目进行解法分析,在原题的基础上进行变式探究,研究椭圆上一点与原点和焦点构成的三角形,能否构成等边三角形,通过椭圆为例进行研究,扩展到双曲线、抛物线的一般性结论.
函数在高考中占有非常重要的地位.若能充分掌握函数的这两个特殊结论,则能灵活巧妙地快速解题.rn结论1:设函数f(x)=g(x)+c(c为常数),若函数g(x)为奇函数,则 f(-x)+f(x)=2c.rn证明:因为函数g(x)为奇函数,则g(-x)=-g(x),所以 g(-x)+g(x)=0.则 f(-x)+f(x)=g(-x)+c+g(x)+c=2c.
期刊
初中代数式ab+a+b+1的因式分解结论在初等数论、高中阶段三角函数、不等式等教学中的趣用.
我们的数学教学对创新总是“耿耿于怀”,难舍难分,当下“学科核心素养”对创新更是“欣赏有加”,但探索始终在路上,本文结合2020年的一道浙江绍兴中考题揭示“创新有时源于把道理说明白后的一种直觉”.