论文部分内容阅读
【摘 要】 初高中各科目之间的衔接不甚紧密,数学科目更是如此,高中数学和初中数学知识点侧重方向不同,导致高中新生数学学习很吃力。如何转变这一局面呢?笔者通过本文试做简述。
【关键词】 数学 侧重方向 知识点
1 高中新生数学成绩普遍不理想的原因
许多刚刚升入高中的学生(新高中生),在初中数学学习成绩优秀,到高中之后,数学学习成绩一落千丈,有的甚至失去了学习数学的信心。常听到学生这样说:“初中时,这些知识老师都讲过,有些没有作为重点来讲,只是了解。老师说高中老师会细讲的,但是现在老师也不讲初中的知识而是拿来直接运用。”这种现象的产生源于初中数学学习侧重点与高中的要求不吻合。
2 高中新生数学成绩普遍不理想的问题分析
举个例子,初中学习解一元二次方程有三种方法:一是直接开方法,二是配方法,三是求根公式法。在初中时重点掌握的是前两种方法,在高中,由于计算量和计算速度的要求,解一元二次方程时最常使用的是十字相乘法和求根公式法。十字相乘法初中教材中没有,初中数学课上不作重点讲授或根本就不讲。像这样的问题很多,导致新高中生不能满足上高中数学课的基本要求。高中数学的学习是螺旋上升的过程,高一的学习以初中为基础,哪一个环节出现问题,都会影响数学的学习。假如知识侧重点衔接出现了问题,久而久之,学不会、跟不上数学学习也就是正常现象了。
随着高中教材改革和初中减负大刀阔斧的进行,初高中数学知识点侧重衔接问题越来越明显,已经成为高中数学学习的第一瓶颈。那么,主要是在哪些知识侧重点衔接上存在问题呢?列举如下:①解一元二次方程问题。②函数和函数图象的关系理解问题。③画一次函数和二次函数的草图的问题。④二次函数的配方问题。
以上问题,为什么是高中数学学习的第一瓶颈呢?分析如下:
2.1 函数图象是认识函数的一个很好的途径。函数图象是函数的具体,使函数具有形的可触性,降低函数的抽象性。函数与函数图象的关系就像是人的身份证号与本人关系一样,一个人对应着一个身份证号,一个身份证号对应一个人。仅仅看到一个人的身份证号是不会了解这个人的,要了解这个人就要了解这个人的生活、工作、学习情况,也就是看这个人的行为。什么样的人有什么样的行为,每个人都有其特有的行为。类似的,什么样的函数有什么样的图象。函数图象的走势、形状、最值、自变量取值范围都直观地反应特定函数的性质。特定函数具有其本身特有的图象。
2.2 画好一次函数图象和二次函数图象是掌握函数的基础。新高中生只知道这两种函数的图象是什么,具体到画图时总是画不准确,不能掌握基本要点。对于一次函数图象,新高中生知道一次函数图象是直线,画直线时总是列出很多的点,将这些点都描在直角坐标系中,再利用这些点画出直线,但不知道由两点确定一条直线,不会快速选出确定直线的两个点。在画二次函数图象时,先利用顶点坐标公式求出顶点坐标,然后根据开口方向在直角坐标系中描出定点,之后随意勾画出抛物线,不注意抛物线的开口的大小、函数图象是否关于对称轴对称。这样画出的图象速度慢、质量难以保证,不仅影响对函数的认识,更将影响以后的学习。在学习基本初等函数时,首先要通过一次函数、二次函数图象学习函数的值域、单调性、奇偶性等。利用二次函数图象学习一元二次不等式的解法,如果对二次函数图象没有深刻的认识,学习一元二次不等式就会有困难,在许多含有参数一元二次不等式的求解过程中,要借助二次函数图象来解答。在学习线性规划问题时要求快速画出约束条件对应的可行域,准确快速画出直线是基础。对于这两种函数图象,初中要求不高,但却是高中继续深入学习的基础。而在高中数学学习内容中不包含如何快速准确画出一次、二次函数的图象。
3 问题的解决方法
①教师认真学习研究初中教学内容、教学大纲和课程标准,掌握初中数学教学侧重点,找出初中数学学习与高中数学学习要求的差距。②对刚刚升入高中的新高中生进行知识测试,测查他们知识掌握的情况,找出他们知识的薄弱点、欠缺点。③结合学生的实际情况和教学要求,制定相应的教学计划。④教学计划实施时,应注意以下几点:腾出足够的时间;知识点的深入,不是把知识点罗列下去,应对相应的知识点多加练习;补充的内容不能过深,否则会打消学生的积极性,影响学习效果。⑤加强对学生学习方法的指导,改变学生的学习方法。初中的学习方法不适应高中的学习,如果再像初中那样学习的话,会影响高中的数学学习。良好的学习方法和习惯,对高中数学的学习非常有帮助,能提高学习效率。⑥经常和学生沟通,注意了解学生的学习情况,以便及时调整教学计划和内容。⑦将学生分成数学学习小组,选出组长。在课下遇到不会的问题可以互相讨论解决,即使在讨论的过程中问题没有解决,学生也得到了思维上的训练,有利于进一步养成好的数学学习惯。
【关键词】 数学 侧重方向 知识点
1 高中新生数学成绩普遍不理想的原因
许多刚刚升入高中的学生(新高中生),在初中数学学习成绩优秀,到高中之后,数学学习成绩一落千丈,有的甚至失去了学习数学的信心。常听到学生这样说:“初中时,这些知识老师都讲过,有些没有作为重点来讲,只是了解。老师说高中老师会细讲的,但是现在老师也不讲初中的知识而是拿来直接运用。”这种现象的产生源于初中数学学习侧重点与高中的要求不吻合。
2 高中新生数学成绩普遍不理想的问题分析
举个例子,初中学习解一元二次方程有三种方法:一是直接开方法,二是配方法,三是求根公式法。在初中时重点掌握的是前两种方法,在高中,由于计算量和计算速度的要求,解一元二次方程时最常使用的是十字相乘法和求根公式法。十字相乘法初中教材中没有,初中数学课上不作重点讲授或根本就不讲。像这样的问题很多,导致新高中生不能满足上高中数学课的基本要求。高中数学的学习是螺旋上升的过程,高一的学习以初中为基础,哪一个环节出现问题,都会影响数学的学习。假如知识侧重点衔接出现了问题,久而久之,学不会、跟不上数学学习也就是正常现象了。
随着高中教材改革和初中减负大刀阔斧的进行,初高中数学知识点侧重衔接问题越来越明显,已经成为高中数学学习的第一瓶颈。那么,主要是在哪些知识侧重点衔接上存在问题呢?列举如下:①解一元二次方程问题。②函数和函数图象的关系理解问题。③画一次函数和二次函数的草图的问题。④二次函数的配方问题。
以上问题,为什么是高中数学学习的第一瓶颈呢?分析如下:
2.1 函数图象是认识函数的一个很好的途径。函数图象是函数的具体,使函数具有形的可触性,降低函数的抽象性。函数与函数图象的关系就像是人的身份证号与本人关系一样,一个人对应着一个身份证号,一个身份证号对应一个人。仅仅看到一个人的身份证号是不会了解这个人的,要了解这个人就要了解这个人的生活、工作、学习情况,也就是看这个人的行为。什么样的人有什么样的行为,每个人都有其特有的行为。类似的,什么样的函数有什么样的图象。函数图象的走势、形状、最值、自变量取值范围都直观地反应特定函数的性质。特定函数具有其本身特有的图象。
2.2 画好一次函数图象和二次函数图象是掌握函数的基础。新高中生只知道这两种函数的图象是什么,具体到画图时总是画不准确,不能掌握基本要点。对于一次函数图象,新高中生知道一次函数图象是直线,画直线时总是列出很多的点,将这些点都描在直角坐标系中,再利用这些点画出直线,但不知道由两点确定一条直线,不会快速选出确定直线的两个点。在画二次函数图象时,先利用顶点坐标公式求出顶点坐标,然后根据开口方向在直角坐标系中描出定点,之后随意勾画出抛物线,不注意抛物线的开口的大小、函数图象是否关于对称轴对称。这样画出的图象速度慢、质量难以保证,不仅影响对函数的认识,更将影响以后的学习。在学习基本初等函数时,首先要通过一次函数、二次函数图象学习函数的值域、单调性、奇偶性等。利用二次函数图象学习一元二次不等式的解法,如果对二次函数图象没有深刻的认识,学习一元二次不等式就会有困难,在许多含有参数一元二次不等式的求解过程中,要借助二次函数图象来解答。在学习线性规划问题时要求快速画出约束条件对应的可行域,准确快速画出直线是基础。对于这两种函数图象,初中要求不高,但却是高中继续深入学习的基础。而在高中数学学习内容中不包含如何快速准确画出一次、二次函数的图象。
3 问题的解决方法
①教师认真学习研究初中教学内容、教学大纲和课程标准,掌握初中数学教学侧重点,找出初中数学学习与高中数学学习要求的差距。②对刚刚升入高中的新高中生进行知识测试,测查他们知识掌握的情况,找出他们知识的薄弱点、欠缺点。③结合学生的实际情况和教学要求,制定相应的教学计划。④教学计划实施时,应注意以下几点:腾出足够的时间;知识点的深入,不是把知识点罗列下去,应对相应的知识点多加练习;补充的内容不能过深,否则会打消学生的积极性,影响学习效果。⑤加强对学生学习方法的指导,改变学生的学习方法。初中的学习方法不适应高中的学习,如果再像初中那样学习的话,会影响高中的数学学习。良好的学习方法和习惯,对高中数学的学习非常有帮助,能提高学习效率。⑥经常和学生沟通,注意了解学生的学习情况,以便及时调整教学计划和内容。⑦将学生分成数学学习小组,选出组长。在课下遇到不会的问题可以互相讨论解决,即使在讨论的过程中问题没有解决,学生也得到了思维上的训练,有利于进一步养成好的数学学习惯。