论文部分内容阅读
现实情况中缺少大量有标签数据,导致有监督的行人再识别模型训练受到影响。此外,低层特征的缺乏语义特性限制了行人再识别在行人检索、罪犯追踪等中的应用。本文提出了一种基于深度学习与属性学习相结合的行人再识别方法,利用深度学习的无监督模型提取行人图像的本质特征,并引入"属性"概念增强特征的语义表达能力。首先采用卷积自动编码器进行无监督的特征提取,提取的特征然后交由多个属性分类器进行属性分类,并结合统计获得的属性类别映射关系表计算最终类别判定,最后在VIPeR和i-LIDS标准数据集上进行了测试,并与基于优化