论文部分内容阅读
针对备件需求量波动大预测精度不高的问题,提出一种基于差分自回归移动平均(ARIMA)、BP神经网络、串联的卷积与长短期记忆神经网络(CNN-LSTM)组合模型的备件需求预测方法。该方法能够充分发挥ARIMA模型出色的线性拟合能力和神经网络突出的非线性拟合能力,克服了单一方法的局限性,并通过实例分析,验证了该组合预测模型的预测精确度高于单一预测模型。