论文部分内容阅读
在模式识别与机器学习中,为了降低高维数据带来的巨大运算量,通常需要对数据进行降维预处理。在常用的数据降维算法中,主成分分析(PCA)与线性判别分析(LDA)是两种最常用的降维方法。由于这两种算法具有较强的内在联系而不易理解,对这两种算法的工作原理与实现进行对比分析,并对两者的应用与扩展进行讨论。