论文部分内容阅读
基于子空间的人脸识别方法易受光照、姿态和表情变化的影响,针对这一问题,提出一种基于Gabor滤波器与共同向量(CV)方法相结合的人脸识别方法。Gabor滤波器因其良好的方向与尺度选择性,能很好地提取图像局部特征,对光照、姿态、表情变化有一定的健壮性;共同向量方法是一种线性子空间分类方法,利用提取的同类样本的共同属性(共同分量)对测试样本进行分类,在训练样本较少的情况下能够取得较好的分类效果。通过在ORL与Yale数据库上的实验表明,提出的方法具有较好的识别效果。