论文部分内容阅读
医学图像融合方法可以将有用的信息整合到一张图像上,提高单张图像的信息量。对多模态医学图像进行融合时,如何对图像进行有效的变换,提取到不同图像中独有的特征,并施以适当的融合规则是医学图像融合领域研究的重点。近年随着深度学习的快速发展,深度学习被广泛应用于医学图像领域,代替传统方法中的一些人工操作,并在图像表示、图像特征提取以及融合规则的选择方面显示出独特优势。本文针对基于深度学习的医学图像融合进展予以探讨,介绍卷积神经网络、卷积稀疏表示、深度自编码和深度信念网络这些常用于医学图像融合的框架,对一些应用