基于样本选择策略的SAR图像半监督分类算法

来源 :天津理工大学学报 | 被引量 : 0次 | 上传用户:lj200610819
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对当前SAR图像半监督协同训练分类算法受相干斑噪声干扰等问题,本文提出了基于选择策略的SAR图像半监督分类方法.该方法首先以超像素为基本单元,在获取伪样本过程中,利用典型相关性分析作为SAR图像高置信度样本补充判别器,而对于低置信度样本,提出基于超像素和主动学习的样本扩充方法,然后基于扩充后的样本实现SAR图像的半监督分类;最后通过理论分析和实验验证了该方法在标注样本较少的情况下,取得了较好的效果和精度,降低了相干斑噪声对分类效果的影响.
其他文献
目的:探讨中西医结合灌肠治疗直肠炎的效果。方法:41例直肠炎患者,随机分成对照组(20例)与观察组(21例)。对照组实施常规治疗,观察组实施中西医联合灌肠治疗,比较两组疗效。结果:观
针对传统核相关滤波器跟踪方法(KCF)在尺度估计不足和抗遮挡性低等问题上,本文提出了一种把梯度直方图和颜色直方图相结合,并利用尺度估计策略提升跟踪框适应性的核相关滤波跟踪算法.该方法首先通过建立核岭回归模型,使用二维核化相关位置滤波器,融合方向梯度直方图(HOG)特征和颜色直方图(CN)特征,采取根据响应大小的方式加权融合跟踪坐标,精确确定目标的中心位置;然后,利用滤波响应的峰值旁瓣比的高低来判定