论文部分内容阅读
采用静电纺丝技术,通过改进实验装置,在最佳的纺丝条件下制备了[Ni(CH3COO)2+PVP]@[SnCl4+PVP]@[Zn(CH3COO)2+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆,将其进行热处理,制备出NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆.采用热重-差热(TG-DTA)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析技术对样品进行了表征.结果表明,所得产物为同轴四层纳米电缆,芯层为NiO,直径为35~55 nm;第二层为SnO2,厚度为30~50 nm;第三层为Zn2TiO4,厚度为25~40 nm;壳层为TiO2,厚度为40~90 nm.对同轴四层纳米电缆的形成机理进行了探讨.
Using electrospinning technique, [Ni (CH3COO) 2 + PVP] @ [SnCl4 + PVP] @ [Zn (CH3COO) 2 + PVP] @ [Ti (OC4H9) 4 + CH3COOH + PVP] composite cable was prepared and annealed to prepare NiO @ SnO2 @ Zn2TiO4 @ TiO2 coaxial four-layer nanocables.Thermal-thermal differential thermal analysis (TG-DTA) and X-ray diffraction XRD, FTIR, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the samples.The results showed that the obtained product was a coaxial four-layer nano-cable with NiO , With a diameter of 35-55 nm; the second layer is SnO2 with a thickness of 30-50 nm; the third layer is Zn2TiO4 with a thickness of 25-40 nm; the shell layer is TiO2 with a thickness of 40-90 nm; Layer nano-cable formation mechanism is discussed.