论文部分内容阅读
在支持向量机多分类方法基础上,提出了一种改进的有向无环图支持向量机(Directed Acyclic Graph Support Vector Machine,DAGSVM)手势识别方法。首先根据Kinect采集到的场景深度信息将前景和背景分开,分割得到手,然后提取其特征向量,利用特征向量训练多个SVM两分类器,采用DAG拓扑结构构成DAGSVM多分类器,并对其结构排序进行改进。实验证明,与其他支持向量机多分类方法相比,改进后的DAGSVM分类器能够达到更高的识别率,并将这个手势识别方法用于智能轮椅