基于AGV通信的网络高覆盖率资源优化调度仿真

来源 :计算机仿真 | 被引量 : 0次 | 上传用户:xufei777
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对AGV通信网络覆盖率资源不完善以及调度效率慢的问题,提出AGV通信的网络高覆盖率资源优化调度方法。根据AVG通信网络资源优化调度原理,获得网络调度中单一节点特征访问的控制模型,构造网络高覆盖率资源模型。运用网络高覆盖率资源模型计算资源分布式调度配置权值,综合考虑AVG通信网络的性能指标、服务质量和服务能力,建立综合评测模型,将测评模型融入到高覆盖率资源模型中,获得网络节点情况,预测任务的执行度,最终使用遗传算法实现模型的优化调度。分析实验结果得出,在AVG通信环境下所设计方法具有执行效率高和优化
其他文献
当前的非授权代码的检测过程忽略了获取线性特征集,代码类型无法得以高精度匹配,导致传统方法出现检测准确率低、耗时长问题。为解决以上问题,提出基于线性特征集的非授权代码敏感路径检测方法。引入深度学习,设计非授权代码特征检测步骤。以非授权代码为目标样本,基于线性特征集判断非授权代码敏感路径判断,利用深度学习提取正常代码样本的函数图特征,并设置阈值,实现非授权代码敏感路径的检测。实验结果表明:与传统方法相
由于传统离群点检测方法未对离群点进行判定,从而导致出现了检测速度慢、检测误差大的问题,为此提出一种海量不确定数据集中离群点快速检测的方法。优先判定出不确定数据集中的离群点,利用点排序识别聚类结构(Ordering points to identify the clustering structure)算法完成,确定待检测离群点所需参数,计算出离群点的离群属性,根据离群属性计算结果,引入邻域密度构建
为了解决对人体动作局部特征点的识别误差率较高的问题,提出一种基于机器学习的人体动作局部特征点识别方法。首先利用人体在时空状态下的差别及运动频率变化,构建多尺度的局部时空领域特征。以目标之前状态为基础,通过卡尔曼滤波计算法对人体关节位置评估,并对之后的状态做误差最优估计,以此构建人体行为数学模型。利用小波转换函数构建神经网络模型,将之前所提取出来的人体动作特征点参数作为输入神经元,输入进神经网络内进
由于非结构化大数据不存在固定控制中心,会严重影响云存储阶段稳定性,因此,以非结构化大数据为研究目标,构建一种云存储稳定性优化方法,并通过仿真加以效果评定。根据架构的不同环状态消耗能量计算方法,最小化非结构化大数据的云存储能量消耗,将优化核心设定为最大化云存储环活动时间,按照内部节点、边界节点编号顺序,完成所有区域云存储平衡函数的并行架构,通过制定约束条件,引入利用概率期望值与弹性期望值,采用存储梯
针对目前算法在多节点信息资源分配推荐时,未对多节点信息资源进行相似性计算,导致多节点信息资源分配时间长,信息资源分配正确率和推荐列表覆盖率较低的问题,提出基于协同过滤的多节点信息资源分配推荐算法。采用协同过滤算法,整合处理节点信息资源,构建信息数据评分模型,运用评分模型,查找节点信息数据的最近邻居集进行预测评分,利用相似性计算,完成多节点信息分类。根据二部图网络结构,资源分配分类节点信息,生成推荐