论文部分内容阅读
非线性方程应用广泛,因此这对于非线性方程的精确求解是非常必要的。对此本文通过对常用的非线性方程方法--Tanh-函数方法进行介绍,最后运用该函数方法对耦合的KdV方程以及(2+1)维Burgers方程等3种类别的非线性微分方程进行案例求解。经过例题解析可以看到Tanh-函数方法可以有效地应用于非线性微分方程的精确求解中,求出了与其他方法不同的精确解。同时研究表明Tanh-函数方法还可以应用于部分的非线性方程组求解中。