论文部分内容阅读
分析Zernike矩人耳特征提取和非负矩阵分解(NMF)人耳特征提取的利弊。将线性判别分析的思想融入到NMF算法中,对传统的NMF方法进行改进。介绍一种融合特征人耳识别方法:将Zernike矩和传统非负矩阵分解融合提取人耳特征,得到一个分类能力更强的人耳特征矩阵,并采用BP神经网络进行分类识别,实验结果表明,应用融合特征方法提取人耳图像特征,可以提高识别效果。