论文部分内容阅读
为了实现发动机故障的快速实时诊断,提出一种基于主成分分析(PCA)和遗传支持向量机(GA-SVM)的发动机故障诊断方法。该方法利用振动信号经小波变换和主元分析来提取故障特征,以减少信号的冗余。针对人为选择SVM参数的盲目性,应用遗传算法优化其参数,并与BP神经网络(BPNN)比较。试验结果表明:GA-SVM比BPNN具有更强的分类识别能力,小样本故障诊断正确率达100%。