论文部分内容阅读
目前大多数个性化隐私保护算法,对敏感属性的保护方法可以分为两种:一种是对不同的敏感属性设置不同的阈值;另一种是泛化敏感属性,用泛化后的精度低的值取代原来的敏感属性值。两种方法匿名后的数据存在敏感信息泄露的风险或信息损失较大,以及数据可用性的问题。为此,提出个性化(p,α,k)匿名隐私保护算法,根据敏感属性的敏感等级,对等价类中各等级的敏感值采用不同的匿名方法,从而实现对敏感属性的个性化隐私保护。实验表明,该算法较其他个性化隐私保护算法有近似的时间代价,更低的信息损失。