【摘 要】
:
针对高功率光纤激光器在实际应用过程中所面临的高效耦合及激光输出质量问题,自行设计了大模场微结构光纤的波导结构,采用集束拉丝技术制备了纤芯直径41 μm、内包层数值孔径0.62、纤芯数值孔径0.05、有效模场面积约530 μm2的掺镱微结构光纤。在抽运功率为35.0 W的条件下,获得的单模激光输出功率为19.1 W,斜率效率为55.2%,光束质量因子M2小于1.01。
【机 构】
:
长春理工大学材料科学与工程学院,吉林长春130022华南理工大学电力学院,广东广州510640
论文部分内容阅读
针对高功率光纤激光器在实际应用过程中所面临的高效耦合及激光输出质量问题,自行设计了大模场微结构光纤的波导结构,采用集束拉丝技术制备了纤芯直径41 μm、内包层数值孔径0.62、纤芯数值孔径0.05、有效模场面积约530 μm2的掺镱微结构光纤。在抽运功率为35.0 W的条件下,获得的单模激光输出功率为19.1 W,斜率效率为55.2%,光束质量因子M2小于1.01。
其他文献
在轨运行过程中, 受空间热环境的影响, 星敏感器的安装矩阵具有轨道周期变化的特征。为了校准卫星结构变形导致的星敏感器之间安装矩阵变化, 提出了一种基于四元数自适应卡尔曼滤波(quaternion Adaptive Kalman Filter, q-AKF)的安装矩阵在轨实时校准方法。该方法结合衰减记忆滤波与简化的Sage_Husa自适应滤波, 通过自适应调整衰减因子, 调节当前量测值在滤波过程中的权重, 以抑制因模型参数不准确造成的滤波性能下降甚至发散问题。仿真试验结果与在轨数据验证结果表明: q-AKF
为采用卫星遥感数据反演的方法获取水下潜行器的光学隐蔽深度,实现时间和空间上大范围、大尺度的测量,为水下航行器搭载的光学隐蔽深度测量装置提供新的校验途径,提出了一种基于准分析算法的光学隐蔽深度卫星反演方法。根据光学隐蔽深度模型,使用Aqua-MODIS以及Terra-MODIS卫星的日网格化遥感反射比数据,先对数据进行预处理,完成遥感反射比数据的质量控制和Aqua、Terra卫星数据的交叉校准,再根
提出一种从地面激光点云数据中提取建筑目标并进行分割的新方法,该方法利用半径渐变的主成分分析法确定各点局部几何特征(最佳半径,法向量、维度特征);根据几何特征将地面点从原始点云中剔除,将非地面点按距离聚类形成点云簇,并对点云簇进行整体特征分析,识别建筑物目标;依据点的局部特征设置区域增长法生长准则对建筑物目标进行平面分割并对分割结果进行优化。实验结果表明,该方法不仅能快速有效提取大场景中的建筑物目标
目前与互补金属氧化物半导体工艺兼容且具有高发光效率的硅基光源的制作技术尚不成熟,针对这一问题,研究了一种新型多晶硅发光器件。首先研究了该结构在反偏电压下可能存在的各种雪崩模式(带间跃迁、轫致辐射、空穴在轻和重质量带之间的带内跃迁、高场条件下的电离和间接带间重组),对不同雪崩模式下的发光机理进行了理论分析;然后研究了器件内部的空穴和电子在反偏电压下的漂移及扩散情况,指出载流子注入增加了参与雪崩倍增过程的载流子数量,进而使碰撞电离率提高;最后对器件的电场、光谱、电流与光强等数据进行分析,对量子效率和光电转换效
研究和设计了探测大气CO2浓度的Raman激光雷达,其发射机采用Nd∶YAG激光的三倍频354.7 nm作为工作波长,发射的单脉冲能量60 mJ,重复频率20 Hz;接收机采用了光电倍增管(量子效率25%)和光子计数器(计数速率200MHz),探测CO2的Raman散射371.66 nm(频移1285 cm-1)信号,采用组合滤光片来抑制强的354.7 nm Mie-Rayleigh后向散射和氧气Raman后向散射375.4 nm对信号的严
用作激光靶的空心玻璃微球或塑料微球,其直径从几微米至几百微米。理想上微球应当是没有缺陷的、球形的,而且其壁厚是均匀的。可以从市场上购买一大批材料合适的、直径和壁厚在要求范围内的微球,然后从其中进行挑选。这种挑选过程要求采用实用的无损坏测试技术,首先,对大量的样品进行迅速的观察,找出较少的微球,它们所具有的对称性足以保证进行进一步测试,其次,精确地确定球对称性、大小、壁厚的均匀性以及氘氚的含量。
报道了一种共轭主链结构三苯胺PPV聚合物发光二极管,器件结构ITO/ploymer/Alq3/Mg:Ag/Ag。在20V驱动电压下,最大亮度达到了1000cd/m2
《Салют-6》站上宇航员试验工作期间,站与地面之间经常保持双向电视联系,可以从地面上观察到在站上的宇航员和仪表的工作情况,以及从站上观察地面上某部分的人和物。电视通讯完成这些任务常常受到限制,因此在电视标准范围内不能对传送信息提出完全无损失的要求。