论文部分内容阅读
摘要:本文以在工业领域中应用较为广泛的电阻炉为被控对象,采用MCS—51单片机实现电阻炉温度计算机控制系统的设计,介绍电阻炉温度计算机控制系统的组成,并完成系统总体控制方案和达林算法控制器的设计,给出系统硬件原理框图和软件设计流程图等。
关键词:电阻炉;温度;控制;单片机
在冶金、化工、电力、造纸、机械制造和食品加工等许多生产过程中,人们需要对各类加热炉、热处理炉、反应炉和锅炉的温度进行检测和控制。电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛。
1系统总体方案设计
1.1控制系统组成
电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成。
1.1.1控制系统主机
考虑到MCS-51系列单片机已经过长期的应用,性能比较稳定,其功能完全可以满足本系统控制要求,人们对它又比较熟悉,因此主机采用AT89C51单片机。
1.1.2 检测装置
系统选用镍铬-镍硅热电偶作为测温元件检测炉膛中的温度。镍铬-镍硅热电偶测温范围为-200~+1200℃(分度号为k)。它线性度较好,价格便宜,输出热电动势较大(40μA/℃),便于测量放大器的选配。热电偶冷端温度补偿采用集成温度传感器AD590。变送器采用两级放大,第一级选用高稳定性运放ICL7650,第二级由通用型集成运算放大器μA741构成。
1.1.3 执行机构
采用交流过零触发型固态继电器控制电路。这种控制方式与传统的采用移相触发电路改变晶闸管导通角的双向晶闸管(SCR)控制方式相比,具有稳定、可靠、先进等优点。
1.1.4 模/数转换器(A/D转换器)
选用AD574A模/数转换器实现对温度信号的转换。AD574A是12位逐次逼近型A/D转换器,转换时间为25μs,转换精度为0.05%。
1.2 控制系统的工作原理
系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。采用热电偶作为测温元件,经变送器及A/D转换电路对测得的温度信号进行处理,送入主机与给定值比较,按控制算法计算后输出控制量,通过固态继电器实现对电阻炉加热功率的调节,使炉温按设定温度曲线变化。本系统还具有报警、键盘输入及显示等功能。
2 系统硬件设计
2.1 温度检测电路及功率放大电路
本系统采用镍铬-镍硅热电偶检测电阻炉中的温度,热电偶测温是基于物体的热电效 应,它由两种不同的金属或合金组成,其优点是结构简单,可将温度信号转换成电压信号,测温范围广、精度高,可实现远距离测量和传送,使用稳定、可靠,因此被广泛应用。
热电偶传感器输出的电压信号较为微弱(只有几毫伏到几十毫伏),因此在进行A/D转换之前必须进行信号变送,由高放大倍数的电路将它放大到A/D转换器通常所要求的电压范围,热电偶的输出热电势为0~56 mV。
2.2 AD574A模/数转换电路
A/D转换器的选择应满足其分辨率要高于系统的精度要求,且有一定的裕量。AD574A内部有时钟脉冲源和基准电压源,无需外加时钟信号。通过改变AD574A引脚8、10、12的外接电路可使其进行单极性和双极性模拟信号的转换。本设计采用单极外输入方式,AD574A的分辨率为1/212≈0.00024414,本系统允许控制误差为1/1000=0.001>0.00024414,故选择AD574A符合设计要求。
2.3 执行机构
传统的SSR控制采用移相触发电路,通过改变晶闸管导通角的大小来调节输出功率,从而达到自动控温的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输给电力系统造成“公害”。本系统采用单片机控制的固态继电器控温电路,其波形为完整的正弦波,对电阻炉这样的惯性较大的被控对象,是一种稳定、可靠、较合理的控制方法。
2.4 键盘/显示电路
系统采用专用键盘/显示接口芯片8279实现键盘输入和显示控制两种功能。8279既可以键盘扫描又可以输出动态显示,它可以减少CPU在扫描键盘或刷新显示时的负担,同时也简化了应用软件的编写。系统配有6位LED显示及24键小键盘,前两位显示炉子编号,后四位显示温度实测值,选择75451作为LED的驱动。键盘上设有16个数字键、8个功能键。这样控制器运行时既可以方便地在线修改各项参数,也可设置多个控制运行命令,操作方便。
2.5 存储器扩展电路
AT89C51片内带有4 KB程序存储器和128字节数据存储器,由于系统需要存储的程序和数据较多,所以需要进行存储器扩展,本系统扩展了1片2716EPROM和1片 6216RAM,使程序存储器、数据存储器容量各增加了2 KB。EPROM中用来存放程序、表格及加温曲线等,RAM中则存放上次输入的曲线参数以及各寄存器的内容。
2.6 报警电路
报警电路采用的是压电式蜂鸣器,通过单片机的P2.7口经过驱动器驱动其发声。压电式蜂鸣器约需要10 mA的驱动电流,如图11-8所示,当电阻炉温度超出允许范围时,P2.7口输出高电平使8050晶体管导通,压电蜂鸣器获得电压而鸣叫,达到报警的目的。
3 软件设计
本系统的软件采用结构化模块程序设计,主要由主程序、中断服务程序和子程序组成,中断服务程序主要有T0定时器中断服务程序,子程序主要有滤波子程序、温度采样子程序、显示子程序、标度变换子程序、达林算法子程序、报警子程序等。
主程序如图所示。首先设置堆栈指针,然后进行初始化,包括設置有关开关标志、暂存单元和显示缓冲区清零、8279初始化、T0初始化以及CPU开中断等,最后扫描键盘,若有键按下则转向键处理程序,若无键按下则继续扫描键盘。
4 结束语
本次设计可以实现一台主机对8个电阻炉的群控功能,8个电阻炉既可以同时运行,又可以单独控制,系统具有较高的实用价值。
参考文献:
[1]杨俊伟.计算机控制技术.大连:大连理工大学出版社, 2012.
[2]潘新民.微型计算机控制技术.北京:高等教育出版社,2010.
关键词:电阻炉;温度;控制;单片机
在冶金、化工、电力、造纸、机械制造和食品加工等许多生产过程中,人们需要对各类加热炉、热处理炉、反应炉和锅炉的温度进行检测和控制。电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于电阻炉具有热效率高、热量损失小、加热方式简单、温度场分布均匀、环保等优点,应用十分广泛。
1系统总体方案设计
1.1控制系统组成
电阻炉温度计算机控制系统主要由主机、温度检测装置、A/D转换器、执行机构及辅助电路组成。
1.1.1控制系统主机
考虑到MCS-51系列单片机已经过长期的应用,性能比较稳定,其功能完全可以满足本系统控制要求,人们对它又比较熟悉,因此主机采用AT89C51单片机。
1.1.2 检测装置
系统选用镍铬-镍硅热电偶作为测温元件检测炉膛中的温度。镍铬-镍硅热电偶测温范围为-200~+1200℃(分度号为k)。它线性度较好,价格便宜,输出热电动势较大(40μA/℃),便于测量放大器的选配。热电偶冷端温度补偿采用集成温度传感器AD590。变送器采用两级放大,第一级选用高稳定性运放ICL7650,第二级由通用型集成运算放大器μA741构成。
1.1.3 执行机构
采用交流过零触发型固态继电器控制电路。这种控制方式与传统的采用移相触发电路改变晶闸管导通角的双向晶闸管(SCR)控制方式相比,具有稳定、可靠、先进等优点。
1.1.4 模/数转换器(A/D转换器)
选用AD574A模/数转换器实现对温度信号的转换。AD574A是12位逐次逼近型A/D转换器,转换时间为25μs,转换精度为0.05%。
1.2 控制系统的工作原理
系统中主机可以选用工业控制计算机、单片微型计算机或可编程序控制器中的一种作为控制器,再根据系统控制要求,选择一种合理的控制算法对电阻炉温度进行控制。采用热电偶作为测温元件,经变送器及A/D转换电路对测得的温度信号进行处理,送入主机与给定值比较,按控制算法计算后输出控制量,通过固态继电器实现对电阻炉加热功率的调节,使炉温按设定温度曲线变化。本系统还具有报警、键盘输入及显示等功能。
2 系统硬件设计
2.1 温度检测电路及功率放大电路
本系统采用镍铬-镍硅热电偶检测电阻炉中的温度,热电偶测温是基于物体的热电效 应,它由两种不同的金属或合金组成,其优点是结构简单,可将温度信号转换成电压信号,测温范围广、精度高,可实现远距离测量和传送,使用稳定、可靠,因此被广泛应用。
热电偶传感器输出的电压信号较为微弱(只有几毫伏到几十毫伏),因此在进行A/D转换之前必须进行信号变送,由高放大倍数的电路将它放大到A/D转换器通常所要求的电压范围,热电偶的输出热电势为0~56 mV。
2.2 AD574A模/数转换电路
A/D转换器的选择应满足其分辨率要高于系统的精度要求,且有一定的裕量。AD574A内部有时钟脉冲源和基准电压源,无需外加时钟信号。通过改变AD574A引脚8、10、12的外接电路可使其进行单极性和双极性模拟信号的转换。本设计采用单极外输入方式,AD574A的分辨率为1/212≈0.00024414,本系统允许控制误差为1/1000=0.001>0.00024414,故选择AD574A符合设计要求。
2.3 执行机构
传统的SSR控制采用移相触发电路,通过改变晶闸管导通角的大小来调节输出功率,从而达到自动控温的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输给电力系统造成“公害”。本系统采用单片机控制的固态继电器控温电路,其波形为完整的正弦波,对电阻炉这样的惯性较大的被控对象,是一种稳定、可靠、较合理的控制方法。
2.4 键盘/显示电路
系统采用专用键盘/显示接口芯片8279实现键盘输入和显示控制两种功能。8279既可以键盘扫描又可以输出动态显示,它可以减少CPU在扫描键盘或刷新显示时的负担,同时也简化了应用软件的编写。系统配有6位LED显示及24键小键盘,前两位显示炉子编号,后四位显示温度实测值,选择75451作为LED的驱动。键盘上设有16个数字键、8个功能键。这样控制器运行时既可以方便地在线修改各项参数,也可设置多个控制运行命令,操作方便。
2.5 存储器扩展电路
AT89C51片内带有4 KB程序存储器和128字节数据存储器,由于系统需要存储的程序和数据较多,所以需要进行存储器扩展,本系统扩展了1片2716EPROM和1片 6216RAM,使程序存储器、数据存储器容量各增加了2 KB。EPROM中用来存放程序、表格及加温曲线等,RAM中则存放上次输入的曲线参数以及各寄存器的内容。
2.6 报警电路
报警电路采用的是压电式蜂鸣器,通过单片机的P2.7口经过驱动器驱动其发声。压电式蜂鸣器约需要10 mA的驱动电流,如图11-8所示,当电阻炉温度超出允许范围时,P2.7口输出高电平使8050晶体管导通,压电蜂鸣器获得电压而鸣叫,达到报警的目的。
3 软件设计
本系统的软件采用结构化模块程序设计,主要由主程序、中断服务程序和子程序组成,中断服务程序主要有T0定时器中断服务程序,子程序主要有滤波子程序、温度采样子程序、显示子程序、标度变换子程序、达林算法子程序、报警子程序等。
主程序如图所示。首先设置堆栈指针,然后进行初始化,包括設置有关开关标志、暂存单元和显示缓冲区清零、8279初始化、T0初始化以及CPU开中断等,最后扫描键盘,若有键按下则转向键处理程序,若无键按下则继续扫描键盘。
4 结束语
本次设计可以实现一台主机对8个电阻炉的群控功能,8个电阻炉既可以同时运行,又可以单独控制,系统具有较高的实用价值。
参考文献:
[1]杨俊伟.计算机控制技术.大连:大连理工大学出版社, 2012.
[2]潘新民.微型计算机控制技术.北京:高等教育出版社,2010.