论文部分内容阅读
提出了一种基于非下采样Contourlet变换(NSCT)域图像去噪算法.首先根据尺度间与尺度内的NSCT系数之间的相关性,用非高斯分布模型对NSCT系数与其邻域系数及父系数进行建模,给出分类准则,把系数分为重要系数和非重要系数,再采用广义高斯分布来模拟重要系数的概率分布,根据贝叶斯理论得到自适应阈值,并求出最佳参量范围.为了克服软、硬阈值函数的缺点,提出一种自适应的新阈值函数,利用新阈值函数估计出不含噪音的变换系数,并通过非下采样Contourlet逆变换得到去噪后的图像.仿真实验表明,本文方法在