论文部分内容阅读
基于概率矩阵分解的协同过滤是推荐系统中应用最广泛的方法。它通过学习用户-商品评分矩阵的两个低维近似矩阵来做推荐。但是在评分矩阵极其稀疏的情况下,概率矩阵分解的推荐准确性就会下降。为了缓解这个问题,提出一种基于变分循环自动编码器的概率矩阵分解方法,该方法综合考虑商品描述文本和评分矩阵,先将商品的描述文本编码成一个特征向量,然后将该特征向量融合到概率矩阵分解模型中来缓解稀疏问题。该方法在编码商品特征向量时,考虑了商品内容的上下文信息和语义信息,并且该特征向量服从高斯分布。在两个真实数据集上的验证结果表明