论文部分内容阅读
本文提出一种基于多字典学习的图像分割模糊模型和算法.在模型中,结合多字典学习和模糊方法,考虑了分割区域内部的一致性和边界的正则性:一方面使用区域块均值和带有类标的结构字典重构图像块,利用重构误差和l2正则能量共同度量分割区域内部的一致性,该度量能够刻画图像不同区域的灰度信息和纹理模式;另一方面采用小波系数稀疏正则保持分割区域边界的几何结构.基于交替方向乘子法和字典学习方法给出新模型的快速求解算法.在该算法中,除了小波阈值,每一步都是显示表达式,因此简单易用.一系列实验结果验证了本文算法的有效性.