论文部分内容阅读
In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation,a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model,a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result,the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities,the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set,and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model.
In order to lessen adverse influences of excessive evaluative indicators of the initial set in multi-sensory evaluation, a2-tuple and rough set based reduction model is built to simplify the initial set of evaluative indicators. In the model, a great variety of descriptive forms of the multi-sensory evaluation are also taken into consideration. As a result, the method proves effective in reducing redundant indexes and minimizing index overlaps without compromising the integrity of the evaluation system. By applying the model in a multi-sensory evaluation involving community public information service facilities, the research shows that the results are satisfactory when using genetic algorithm optimized BP neural network as a calculation tool. It shows that using the reduced and simplified set of indicators has a better predication performance than the initial set, and 2-tuple and rough set based model offers an efficient way to reduce indicator redundancy and improves prediction capability of the evaluation model