论文部分内容阅读
摘 要:利用花生转录组测序结果和GenBank EST数据库,首次从花生中克隆了黄烷酮3-羟化酶基因,命名为AhF3H,GenBank登录号为KF312218。氨基酸序列分析表明,AhF3H与其他植物F3H有较高的同源性。进化树分析表明,AhF3H与大豆、野生大豆F3H的亲缘关系较近。在花生紫色种质材料及丰花1号中,AhF3H的相对表达水平同花青素含量呈正相关,表明AhF3H在花生花青素合成代谢过程中具有重要作用。
关键词:花生;花青素;黄烷酮3-羟化酶;基因表达
中图分类号:Q785 文献标识号:A 文章编号:1001-4942(2013)11-0001-06
花青素(Anthocyanin)又称为花色素,是一种酚类色素,广泛存在于植物中,尤其是花和果实中。其基本结构是3,5,7-三羟基-2-苯基苯并呋喃,即花色素基元。由于花色素基元中R1和R2取代基的不同,形成了各种各样的花青素。植物中常见的花青素主要有6种,即天竺葵色素(Pelargonidin)、矢车菊色素(Cyanidin)、飞燕草色素(Delphindin)、芍药色素(Peonidin)、牵牛花色素(Petunidin)和锦葵色素(Malvidin)[1]。由于花青素种类、含量以及生理条件的差异使植物呈现不同的体色或花色。此外,花青素作为一种天然植物色素,安全无毒副作用,并且具有重要的营养价值和药用价值。
植物花青素生物合成途径大致可以分为三个阶段[2]。第一个阶段苯丙氨酸经过一系列反应生成4-香豆酰CoA,由苯丙氨酸裂解酶(PAL)、肉桂酸羟化酶(C4H)和4-香豆酰CoA连接酶(4CL)依次催化,这一过程是许多植物次生代谢途径所共有的;第二个阶段4-香豆酰CoA和丙二酰CoA反应生成二氢黄酮醇,它是类黄酮代谢途径的关键步骤,由查耳酮合酶(CHS)、查耳酮异构酶(CHI)和黄烷酮3-羟化酶(F3H)等催化;第三个阶段是二氢黄酮醇生成各种花青素:首先,二氢黄酮醇还原酶(DFR)将二氢黄酮醇转化成无色花青素,然后在花青素合成酶(ANS)的作用下经过氧化脱水形成花青素。花青素不稳定,最终经糖基化、甲基化、酰基化、羟基化等一系列修饰作用形成稳定的花青苷。
F3H能够催化黄烷酮生成二氢黄酮醇,是植物花青素生物合成途径中的一个关键酶。利用反义RNA技术抑制香石竹(Dianthus caryophyllus)F3H表达会使花色发生不同程度的改变,花瓣由橙色变成淡红色、甚至白色[3]。在草莓(Fragaria vesca)中反义抑制F3H的表达则会阻断花青素合成代谢,影响果实中花青素积累[4]。一些花色及果色突变体植物中F3H的表达水平受到一定程度的影响,表明F3H在花青素合成代谢过程中发挥重要作用[5,6]。蓝莓(Vaccinium myrtillus)是一种花青素含量较为丰富的水果,在果实成熟过程中,花青素合成代谢相关结构基因CHS、F3H、DFR和ANS均大量表达,花青素含量急剧增加,果实由绿色经红色变成黑紫色;而红色和白色突变体果实中基本检测不到CHS、F3H和ANS的表达[7]。目前,已经从多种植物中克隆了F3H基因,如金鱼草(Antirrhinum majus)[5]、矮牵牛(Petunia hybrida)[8]、苹果(Malus pumila)[9]、葡萄(Vitis vinifera)[10]、玉米(Zea mays)[11]、拟南芥(Arabidopsis thalian)[12]、紫苏(Perilla frutescens)[13]等。本研究利用花生转录组测序结果以及GenBank EST数据库首次克隆了花生F3H基因,并对其在花生紫色种质材料及丰花1号中的表达情况进行分析,以期为深入探讨花生花青素积累的分子机理以及彩色花生分子育种奠定基础。
1 材料和方法
11 试验材料
12 试验方法
24 花青素含量分析
花青素种类以及含量的差异通常会引起植物体色和花色不同。花生紫色种质材料茎、叶片和种皮均呈现紫色,幼苗期的茎和叶片尤为明显,随着植株的生长发育叶片紫色逐渐减弱;而丰花1号在整个生长发育周期中茎和叶片一直呈绿色。花青素测定结果显示,花生紫色种质材料中的花青素含量显著高于丰花1号(图4)。
图4 不同花生材料中花青素含量
3 讨论
本试验首次克隆了花生F3H基因,并分析了其在花生紫色种质材料及栽培品种丰花1号中的表达情况,结果显示花生紫色种质材料中AhF3H的相对表达水平明显高于丰花1号,与花青素含量呈正相关。
参 考 文 献:
[1] Jansen G, Flamme W Coloured potatoes (Solanum tuberosum L) anthocyanin content and tuber quality [J] Genetic Resources and Crop Evolution, 2006, 53(7):1321-1331
[2] He F, Mu L, Yan G L, et al Biosynthesis of anthocyanins and their regulation in colored graps [J] Molecules, 2010, 15(12):9057-9091
[3] Zuker A, Tzfira T, Ben-Meir H, et al Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene [J] Molecular Breeding, 2002,9(1):33-41 [4] Jiang F, Wang J, Jia H, et al RNAi-mediated silencing of the flavonone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J] Journal of Plant Growth Regulation, 2013, 32(1): 182-190
[5] Martin C, Prescott A, Mackay S, et al Control of anthocyanin biosynthesis in flowers of Antirrhinum majus [J] The Plant Journal,1991,1(1):37-49
[6] Yang Y, Zhao G, Yue W, et al Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear(Pyrus communis L) [J] Tree Genetics & Genomes, 2013, 9:1351-1360
[7] Jaakola L, Mtt K, Pirttil A M, et al Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development [J] Plant Physiology, 2002, 130(2):729-739
[8] Britsch L, Ruhnau-Brich B, Forkmann G Molecular cloning, sequence analysis, and in vitro expression of flavanone 3β-hydroxylase from Petunia hydrida [J] The Journal of Biological Chemistry, 1992, 267(8):5380-5387
[9] Davies K M A cDNA clone for flavanone 3-hydroxylase from Malus[J] Plant Physiology, 1993, 103:291
[10]Sparvoli F, Martin C, Scienza A, et al Cloning and molecular analysis of structural genes involved in flavonoid and stilvene biosynthesis in grape (Vitis vinifera L) [J] Plant Molecular Biology, 1994, 24:743-755
[11]Deboo G, Albertsen M C, Taylor L P Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers [J] The Plant Journal, 1995, 7(5):703-713
[12]Pelletier M K, Shirley B W Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings [J] Plant Physiology, 1996, 111:339-345
[13]Gong Z, Yamazaki M, Sugiyama M, et al Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens [J] Plant Molecular Biology, 1997, 35:915-927
[14]Mancinelli A, Rossi F, Moroni A Cryptochrome, phytochrome, and anthocyanin production[J] Plant Physiology, 1991, 96:1079-1085
[15]Serrano M, Kanehara K, Torres M, et al Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis[J] Plant Physiology, 2012, 158:408-422
[16]Xia H, Zhao C Z, Hou L, et al Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness[J] BMC Genomics, 2013, 14(1):517
[17]Espley R V, Brendolise C, Chagné D, et al Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J] The Plant Cell, 2009, 21:168-183
[18]Wang Z, Meng D, Wang A, et al The methylation of the PcMYB10 promoter is associated with green-skinned sport in max red bartlett pear[J] Plant Physiology, 2013, 162(2):885-896
[19]Furukawa T, Maekawa M, Oki T, et al The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp [J] The Plant Journal, 2007, 49(1):91-102
[20]Sweeney M T, Thomson M J, Cho Y G, et al Global dissemination of a single mutation conferring white pericarp in rice[J] PLoS Genetics, 2007, 3(8):e133
[21]Gross B L, Steffen F T, Olsen K M The molecular basis of white pericarps in african domesticated rice: novel mutations at the Rc gene [J] Journal of Evolutionary Biology, 2010, 23:2747-2753
关键词:花生;花青素;黄烷酮3-羟化酶;基因表达
中图分类号:Q785 文献标识号:A 文章编号:1001-4942(2013)11-0001-06
花青素(Anthocyanin)又称为花色素,是一种酚类色素,广泛存在于植物中,尤其是花和果实中。其基本结构是3,5,7-三羟基-2-苯基苯并呋喃,即花色素基元。由于花色素基元中R1和R2取代基的不同,形成了各种各样的花青素。植物中常见的花青素主要有6种,即天竺葵色素(Pelargonidin)、矢车菊色素(Cyanidin)、飞燕草色素(Delphindin)、芍药色素(Peonidin)、牵牛花色素(Petunidin)和锦葵色素(Malvidin)[1]。由于花青素种类、含量以及生理条件的差异使植物呈现不同的体色或花色。此外,花青素作为一种天然植物色素,安全无毒副作用,并且具有重要的营养价值和药用价值。
植物花青素生物合成途径大致可以分为三个阶段[2]。第一个阶段苯丙氨酸经过一系列反应生成4-香豆酰CoA,由苯丙氨酸裂解酶(PAL)、肉桂酸羟化酶(C4H)和4-香豆酰CoA连接酶(4CL)依次催化,这一过程是许多植物次生代谢途径所共有的;第二个阶段4-香豆酰CoA和丙二酰CoA反应生成二氢黄酮醇,它是类黄酮代谢途径的关键步骤,由查耳酮合酶(CHS)、查耳酮异构酶(CHI)和黄烷酮3-羟化酶(F3H)等催化;第三个阶段是二氢黄酮醇生成各种花青素:首先,二氢黄酮醇还原酶(DFR)将二氢黄酮醇转化成无色花青素,然后在花青素合成酶(ANS)的作用下经过氧化脱水形成花青素。花青素不稳定,最终经糖基化、甲基化、酰基化、羟基化等一系列修饰作用形成稳定的花青苷。
F3H能够催化黄烷酮生成二氢黄酮醇,是植物花青素生物合成途径中的一个关键酶。利用反义RNA技术抑制香石竹(Dianthus caryophyllus)F3H表达会使花色发生不同程度的改变,花瓣由橙色变成淡红色、甚至白色[3]。在草莓(Fragaria vesca)中反义抑制F3H的表达则会阻断花青素合成代谢,影响果实中花青素积累[4]。一些花色及果色突变体植物中F3H的表达水平受到一定程度的影响,表明F3H在花青素合成代谢过程中发挥重要作用[5,6]。蓝莓(Vaccinium myrtillus)是一种花青素含量较为丰富的水果,在果实成熟过程中,花青素合成代谢相关结构基因CHS、F3H、DFR和ANS均大量表达,花青素含量急剧增加,果实由绿色经红色变成黑紫色;而红色和白色突变体果实中基本检测不到CHS、F3H和ANS的表达[7]。目前,已经从多种植物中克隆了F3H基因,如金鱼草(Antirrhinum majus)[5]、矮牵牛(Petunia hybrida)[8]、苹果(Malus pumila)[9]、葡萄(Vitis vinifera)[10]、玉米(Zea mays)[11]、拟南芥(Arabidopsis thalian)[12]、紫苏(Perilla frutescens)[13]等。本研究利用花生转录组测序结果以及GenBank EST数据库首次克隆了花生F3H基因,并对其在花生紫色种质材料及丰花1号中的表达情况进行分析,以期为深入探讨花生花青素积累的分子机理以及彩色花生分子育种奠定基础。
1 材料和方法
11 试验材料
12 试验方法
24 花青素含量分析
花青素种类以及含量的差异通常会引起植物体色和花色不同。花生紫色种质材料茎、叶片和种皮均呈现紫色,幼苗期的茎和叶片尤为明显,随着植株的生长发育叶片紫色逐渐减弱;而丰花1号在整个生长发育周期中茎和叶片一直呈绿色。花青素测定结果显示,花生紫色种质材料中的花青素含量显著高于丰花1号(图4)。
图4 不同花生材料中花青素含量
3 讨论
本试验首次克隆了花生F3H基因,并分析了其在花生紫色种质材料及栽培品种丰花1号中的表达情况,结果显示花生紫色种质材料中AhF3H的相对表达水平明显高于丰花1号,与花青素含量呈正相关。
参 考 文 献:
[1] Jansen G, Flamme W Coloured potatoes (Solanum tuberosum L) anthocyanin content and tuber quality [J] Genetic Resources and Crop Evolution, 2006, 53(7):1321-1331
[2] He F, Mu L, Yan G L, et al Biosynthesis of anthocyanins and their regulation in colored graps [J] Molecules, 2010, 15(12):9057-9091
[3] Zuker A, Tzfira T, Ben-Meir H, et al Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene [J] Molecular Breeding, 2002,9(1):33-41 [4] Jiang F, Wang J, Jia H, et al RNAi-mediated silencing of the flavonone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J] Journal of Plant Growth Regulation, 2013, 32(1): 182-190
[5] Martin C, Prescott A, Mackay S, et al Control of anthocyanin biosynthesis in flowers of Antirrhinum majus [J] The Plant Journal,1991,1(1):37-49
[6] Yang Y, Zhao G, Yue W, et al Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear(Pyrus communis L) [J] Tree Genetics & Genomes, 2013, 9:1351-1360
[7] Jaakola L, Mtt K, Pirttil A M, et al Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development [J] Plant Physiology, 2002, 130(2):729-739
[8] Britsch L, Ruhnau-Brich B, Forkmann G Molecular cloning, sequence analysis, and in vitro expression of flavanone 3β-hydroxylase from Petunia hydrida [J] The Journal of Biological Chemistry, 1992, 267(8):5380-5387
[9] Davies K M A cDNA clone for flavanone 3-hydroxylase from Malus[J] Plant Physiology, 1993, 103:291
[10]Sparvoli F, Martin C, Scienza A, et al Cloning and molecular analysis of structural genes involved in flavonoid and stilvene biosynthesis in grape (Vitis vinifera L) [J] Plant Molecular Biology, 1994, 24:743-755
[11]Deboo G, Albertsen M C, Taylor L P Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers [J] The Plant Journal, 1995, 7(5):703-713
[12]Pelletier M K, Shirley B W Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings [J] Plant Physiology, 1996, 111:339-345
[13]Gong Z, Yamazaki M, Sugiyama M, et al Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens [J] Plant Molecular Biology, 1997, 35:915-927
[14]Mancinelli A, Rossi F, Moroni A Cryptochrome, phytochrome, and anthocyanin production[J] Plant Physiology, 1991, 96:1079-1085
[15]Serrano M, Kanehara K, Torres M, et al Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis[J] Plant Physiology, 2012, 158:408-422
[16]Xia H, Zhao C Z, Hou L, et al Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness[J] BMC Genomics, 2013, 14(1):517
[17]Espley R V, Brendolise C, Chagné D, et al Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J] The Plant Cell, 2009, 21:168-183
[18]Wang Z, Meng D, Wang A, et al The methylation of the PcMYB10 promoter is associated with green-skinned sport in max red bartlett pear[J] Plant Physiology, 2013, 162(2):885-896
[19]Furukawa T, Maekawa M, Oki T, et al The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp [J] The Plant Journal, 2007, 49(1):91-102
[20]Sweeney M T, Thomson M J, Cho Y G, et al Global dissemination of a single mutation conferring white pericarp in rice[J] PLoS Genetics, 2007, 3(8):e133
[21]Gross B L, Steffen F T, Olsen K M The molecular basis of white pericarps in african domesticated rice: novel mutations at the Rc gene [J] Journal of Evolutionary Biology, 2010, 23:2747-2753