论文部分内容阅读
在深入研究形态小波与排列熵的基础上,提出一种新的变速器齿轮故障识别方法。引入形态小波的概念,提出采用形态Haar小波对实测变速器齿轮振动信号进行降噪预处理;将排列熵作为变速器齿轮故障的特征值,提取了包括齿轮正常、齿面轻度磨损、齿面中度磨损和断齿等4种工况的振动信号;依据不同的故障对应不同的排列熵分布,对各种故障状态进行分类,同时对比了未降噪信号的排列熵分布。变速器齿轮故障识别的实例验证了形态小波与排列熵结合能有效提高齿轮故障分类能力。