论文部分内容阅读
为了对目标进行跟踪和识别,针对固定场景提出一种基于视频的运动目标检测和识别算法。该方法采用改进的混合高斯模型为动态背景更新方法,并结合梯度背景差分方法及Otsu′s阈值分割法提取出运动目标,然后利用目标特征参数建立目标链,通过两条目标链间的目标特征匹配实现运动目标的快速跟踪与行为识别。该方法与传统方法相比具有更好的学习能力,提高了算法的场景适应性,从而有效地提高了运动目标检测的正确率和快速性。实验结果表明该方法具有良好的鲁棒性和自适应性。