【摘 要】
:
线性空间的相关定理及其公式对于解决诸多代数问题提供了有力的工具,该文将线性空间中的维数公式推广到一般矩阵上,利用推广的维数公式及相应的定理来证明Sylvester不等式、F
【基金项目】
:
Supported by the Guangxi Science Foundation(2011GXNSFA018144);the Scientific Research Foundation of Guangxi Education Committee(200707LX233);the forth project of“eleven-five”of Guangxi teaching refo
论文部分内容阅读
线性空间的相关定理及其公式对于解决诸多代数问题提供了有力的工具,该文将线性空间中的维数公式推广到一般矩阵上,利用推广的维数公式及相应的定理来证明Sylvester不等式、Frobenius不等式等一些重要的关于秩的命题.
其他文献
边境地区的城镇化在中国城市化研究中容易被忽略,而其对繁荣边境地区经济、促进民族团结、维护边境稳定具有战略意义。通过"城市首位律"理论研究发现,广西城镇体系中城市规模
夜游症是发生于睡眠中的一种自动性行为,是睡眠障碍的一种表现.多见于儿童,且男多于女,可每夜或隔几夜一发.其特点是睡眠之中,无明显外界刺激,突然起床,或行走,或干活,或进行
<正> 姚远: 昨天得悉《剧本》六月号将发表《下里巴人》,我激动得流泪了。是因为《下里巴人》这个剧本的名字牵动了我的情思?还是因为你坎坷的身世勾得我心里那么酸楚?我说不
法律方面的问题直接影响到我国的金融生态环境。当前这些问题越来越突出,越来越重要。在下一步金融改革中,完善与金融有关的立法已成为工作的重点。
小组合作作为一种新型的教学策略,日渐融入道德与法治课堂。一方面,小组合作依托团队力量,畅享交流表达,共享智慧成果。另一方面,注重形式,轻视内容;注重整体,轻视个体;注重
文章以中国中小创业板上市公司为样本,检验了中小企业公司治理在银行信贷决策中的作用,研究结果显示,中小创业板上市公司的信贷总额、短期信贷规模与股权制衡呈显著的正相关
经济全球化时代的到来,各国间的经济贸易往来日益密切。在商业贸易往来过程中,在商品中注入本国文化,不仅可以展现出本商品的特色,更有利于传播本国文化。基于此,分析了茶包
【研究目的】肝细胞癌(hepatocellular carcinoma,HCC)是肝恶性肿瘤中最常见的病理类型,其进展快,恶性程度较高,预后较差,死亡率较高。HCC预后较差的主要原因是转移和复发。
随着云计算、物联网和虚拟现实等带宽饥渴型业务的不断增长,光传输系统面临着不断扩容的压力。单波速率超过10 Gb/s的无源光网络(PON)已经成为目前的研究热点。而对于接入网来说,低成本、低功耗是其重要的衡量标准,所以采用低成本10-G器件实现25-Gb/s PON具有很好的应用前景。但是在这样的带宽受限PON系统中,会存在比较严重的码间干扰,光功率预算和色散容忍度也会降低,成为实现低成本25-Gb
<正>"世界客车大王"42.6亿元高溢价收购"兄弟"精益达引发质疑;董事长汤玉祥将率管理层持股43%获公司控制权。一家原本名不见经传的地方企业,因为一场即将到来的收购而成为资