论文部分内容阅读
为了提高短期电力负荷预测准确性,提出一种蚁群算法(ACO)优化支持向量机(SVM)的短期电力负荷预测模型(ACO—SVM)。首先采用混沌理论对短期电力负荷样本进行重构,然后将SVM参数作为蚂蚁的位置向量,通过蚁群信息交流和相互协作找到SVM最优参数,最后建立短期电力负荷的最优预测模型,并采用实际短期电力负荷数据进行有效性验证。结果表明,ACO—SVM能够准确刻画短期电力负荷变化特性,提高了短期电力负荷的预测准确性。