论文部分内容阅读
将局部均值分解(LMD)和K近邻(KNN)算法结合起来对滚动轴承进行了故障诊断。首先,将LMD应用在轴承振动信号的分解,故障信息被包含在不同的PF分量中,对每个PF分量从时域和频域两个方面进行特征值提取。针对获得的高维特征向量进行PCA降维,最后在低维空间里,基于KNN算法,实现样本状态分类。实验结果表明,不同故障类型的滚动轴承样本均能被正确诊断。