论文部分内容阅读
针对当前机器人路径规划算法存在局部最优问题,提出了一种改进的移动机器人路径规划算法。该算法采用改进的人工势场算法产生初始化种群,改进的遗传算法引入了新的适应性函数和“翻转变异”算子、进行全局路径优化。适应性函数包括路径点的适应度和路径的适应度,提高了适应性函数的评价性能。“翻转变异”使障碍物路径变为自由路径,使移动机器人顺利绕过障碍物。克服了传统遗传算法的早熟收敛问题,提高了遗传算法的效率。实验结果表明该算法在移动机器人路径规划中的可行性和有效性。