论文部分内容阅读
构建了一个基于深度玻尔兹曼机的故障诊断系统。首先,基于一个滚动轴承故障实验平台,对深度玻尔曼兹机的在滚动轴承故障诊断领域应用进行了深度分析;然后将方案应用于20 kg级的航空涡喷发动机的故障诊断中;通过与BP神经网络和支持向量机故障诊断模型进行对比,实验结果表明:采用深度玻尔兹曼机对机械设备故障进行故障识别,具有更高的准确性和可靠性。