论文部分内容阅读
电路板红外图像发热芯片区域准确分割是电路板故障诊断的关键步骤,但灰度不均匀、目标区域多、辐射噪声大使电路板红外图像的准确分割变得较为困难。针对这一问题,本文提出一种改进的脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)红外图像分割模型。首先,调整传统PCNN的模型结构,将图像梯度信息作为输入信号增加到模型输入域;其次,基于最大似然估计原理,推导出链接系数β的动态调整方法;最后,在脉冲发生域引入边缘约束算法,防止邻域神经元误捕获,增强目标区域的可分割性。实验结果表