论文部分内容阅读
在人机交互领域(Human-Computer Interaction,HCI)中,基于视觉的手势识别因其直观、高效的特点拥有广阔的应用前景。为了改善传统手势识别算法识别率低、鲁棒性差的缺点,基于OpenCV和Keras深度学习框架提出一种简单、快速的手势识别方法作为人机交互的接口。手势图像经过3个处理阶段:预处理、特征提取和分类。对输入图像进行预处理,使用YCbCr肤色模型提取出手部肤色区域,将其转化为灰度图像。使用卷积神经网络对手势图像进行特征提取和分类。实验结果表明:提出的手势识别方法识别率很高