基于孪生区域候选网络的目标跟踪模型

来源 :小型微型计算机系统 | 被引量 : 1次 | 上传用户:Red_Cell
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了解决被跟踪目标因尺度、形状变化导致的跟踪效果变差的问题,本文提出一种基于孪生区域候选网络的目标跟踪模型,对孪生区域候选网络(SiamRPN)优化,升级特征提取基准网络,采取多层特征融合模式,引入注意力机制模块增强位置特性和通道特性,并应用检测领域提出的GA-RPN替换原有的RPN(区域候选网络).OTB2015和VOT2018数据集的实验结果显示,本文模型对OTB2015数据集成功率为0.678,准确率为0.882,与SiamRPN相比分别提高了3.7%,6.2%;对VOT2018数据集检测帧率
其他文献
针对遥感影像快速有效的场景分类,提出了一种低维度稠密特征编码的场景分类算法.首先提取遥感图像不同尺度下的稠密特征,利用Hellinger kernel对原始特征进行映射变换形成新的特征空间,采用主成分分析对新的特征降维并进行Fisher编码量化,进而实现遥感图像的低维度稠密特征表达,最后在线性支持向量机中完成遥感影像的场景分类.所提出的算法分别在UC Merced、WHU和NWPU-RESISC4
字符串匹配是生物识别、入侵检测的基础,也是大数据互联网时代的研究热点.随着现代信息技术的发展,日常工作生活中移动及手持小型化设备的使用越发普遍.这些设备的应用场景中
微博短文本是一种典型的用户生成数据(user generate data),蕴含了丰富的用户情感信息,微博短文本情感分类在舆情分析等众多应用中具有较强的实用价值.微博短文本具有简洁不
心理健康问题已经成为当今社会关注的焦点,它严重威胁着家庭和睦与社会稳定.有心理危机的用户经常通过特定的社区论坛或者社交媒体来求助或倾述,这为用户心理危机识别开辟了
《网络安全法》是我国第一部关于网络安全的综合立法,与大众的互联网生活息息相关.因此,一款面向大众的《网络安全法》智能违法行为识别系统有助于规范互联网行为.然而,现有
微学习单元是微学习过程里的基本学习单位,具有高维性.提取微学习单元适合的特征,保留有代表性的特征,有助于降低冗余,是提高微学习聚类精度的重要方法之一.为获得适合的微学
量子搜索算法,相较于经典计算有着平方根的加速,在许多机器学习算法中都有广泛应用,如量子KNN算法、量子特征提取、量子主成分分析等.在目标分量占比较小的时候,量子搜索算法
作为目前最重要的中远红外光源,量子级联激光器(QCL)因独特的性能和频率可拓展至太赫兹(THz)的特点,成为研究的热点.对于QCL,影响其输出功率和工作温度的因素较多,其中高效散