论文部分内容阅读
为了避免传统方法预测短期电力负荷建模复杂性,将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络,结合电力负荷历史数据,对短期电力负荷进行仿真预测。仿真结果表明,该混合算法有效地解决了常规BP算法学习网络权值收敛速度慢、易陷入局部极小和GA算法独立训练神经网络速度缓慢等问题,具有较快的收敛速度和较高的预测精度。