论文部分内容阅读
来源于SCADA系统的负荷历史数据由于各种原因含有一定的脏数据,在进行高精度的电 力负荷预测或系统分析前必须仔细而合理地对历史数据进行清洗。文中基于数据挖掘理论提出一 种动态的智能清洗模型,先根据模糊软聚类思想对Kohonen神经网络进行了改进,改进后的 Kohonen神经网络能实现模糊软聚类的并行计算,提出的动态算法能根据样本集的更新而自动确 定新的聚类中心(即特征曲线),最后与径向基函数(RBF)网络一起构成脏数据的智能清洗模型。 模型的快速性和动态性特点使其宜于进行负荷数据的实时处理,对重庆江北负荷数据的实例分析 说明了该模型的高效性。