论文部分内容阅读
针对冶炼过程中碳含量不能直接测定的不足,采用RBF神经网络对真空感应炉的终点碳含量进行预报.在第一次预报时,初步计算出冶炼到达终点的时间和终点的碳含量;经过二次预报进行误差校正,使结果更加精确.结合现场120组数据进行学习和预报,预报命中率较高.实验结果表明,采用该方法预报碳含量可以取得良好的效果.