论文部分内容阅读
径向基神经网络(RBFNN)有很好的函数逼近能力,本文把图像看成函数,用RBFNN来表示图像,并在学习过程中进行逼近,采用交叉检验的方法来确定网络模型并控制学习过程,使得网络既能较好地逼近图像,又对噪声进行抑制,从而达到图像降噪的目的。实验证明这是一个可行的盲目图像降噪方法,有广泛的适用性。本文还给出了实验中改进交叉检验方法的技术,给出了与wiener滤波器降噪的实验效果对比图。