论文部分内容阅读
针对由工作环境和设备状况的差异引起的轴承早期故障检测模型可靠性差、误报警率高的问题,根据早期故障检测的特点和需求,提出一种多尺度注意力深度领域适配模型。首先,将监测信号处理成由原始信号、希尔伯特-黄变换边际谱、频谱组成的三通道数据;然后,通过在残差注意力模块中增加不同尺寸的滤波器以提取多尺度深度特征,使用卷积-反卷积操作来重构输入信息从而获得注意力信息,并且将注意力信息与多尺度特征融合构建了一种多尺度残差注意力模块,用于提取对早期故障表征能力更强的注意力特征;其次,在所提取到的注意力特征基础上,构建