论文部分内容阅读
为了在计算机视觉任务中构造有意义的图像表示,提出一种基于概率密度函数(p.d.f)梯度方向直方图特征的分层稀疏表示方法用于图像分类。传统分层稀疏表示方法利用SIFT描述子或者直接从图像块学习图像表示,通常不具有较强判别性。该文利用具有通用性的p.d.f特征进行分层学习并使用空间金字塔最大池化方式构造图像级稀疏表示。实验结果证明了所提算法的鲁棒性和有效性,在UIUC-Sports,Oxford Flowers,Scene15三类数据集上分别达到87.3%,86.6%,84.1%的分类准确率。