【摘 要】
:
设P(n,k)为整数n分为k部的无序分拆的个数,每个分部≥1,它为大师欧拉所建立(1707-1783).它是组合图论和数论里最重要的数据之一.然而,它却十分难于计数和造表.本文,由公式P(n
论文部分内容阅读
设P(n,k)为整数n分为k部的无序分拆的个数,每个分部≥1,它为大师欧拉所建立(1707-1783).它是组合图论和数论里最重要的数据之一.然而,它却十分难于计数和造表.本文,由公式P(n,k)=P(n-1,k-1)+P(n-k,k)定义了P(n,k)的左肩数和锐角数,并由此得到求P(n,k)的左肩法则(第一法则).还根据本文作者[5]的一些重要定理得到求P(n,k)的斜线法则(第二法则).使用这些法则得到造P(n,k)大表的有趣原理.为方便计,我们仅用第一法则设计了计算机程序,用此程序即可快速造出任意大的Pn,k)表.
其他文献
本文证明高密度情形格点Sierpinski地毯上边渗流模型无穷开串的唯一性,同时给出本模型相变存在性的一个新的证明.一种再标度技巧被发展并用作我们证明的主要工具.
本文证明了Rn上奇异积分乘积之有限和的多线性算子是从HKα1q1,p1(Rn)×…×HKαk,pk,pk(Rn)到Hα,pq(Rn)有界的,如果它满足由目标空间所确定的直到一定阶的消失矩条件.这些
本文建立了一个界面化学反应模型,这个模型是一个具有非线性边界条件的抛物型反应扩散方程组.通过建立并求解关于方程组的解的微分不等式,我们得到了解及其任意阶导数在L∞的
鲜美烟台葡园翠绿,果酒飘香.rn6月28日至30日,装扮一新的烟台国际博览中心人潮涌动.VinChina第十二届烟台国际葡萄酒博览会在这里隆重开幕,一年一度的国际葡萄酒盛会,让世界
体育与健康课是在室外进行的一种开放性的教学活动,极易受外界环境的干扰.因此,良好的课堂常规、严密的教学管理是体育教学顺利、安全进行的重要保证,也是体育德育教育的重要
论文《由两道概率论习题引发的讨论》(数学通报,2004.6以下简称为文[1]),是从两道概率论习题引发出各自的推广形式,但文[1]中推广形式的结论表达式①,②以及证明存在不妥,在
[摘 要]电工类知识更新快、实践性强,对学生的理论知识和实践技能有较高的要求。在课程教学过程中,我们必须更新教育观念,改变传统的教学方法,大力培养学生的创新精神,提高学生综合素质,在教学中进行改革,以适应社会主义现代化建设与知识经济时代对技术人才的需要。 [关键词]课程改革素质教育改革创新 在信息化社会的今天,新的课程改革不仅仅是教材的改革,更重要的是教育观念的更新。在电工教学中,更需要在