论文部分内容阅读
针对振动信号的非平稳性、非线性以及未知复合故障难以诊断的问题,提出了一种基于深度卷积网络的未知复合故障诊断模型。首先将采集到的时域振动信号通过小波变换生成频谱图像;然后将频谱图输入卷积神经网络(convolutional neural network,CNH),利用卷积网络自适应的特征提取能力对复合故障进行特征学习;最后将深度卷积网络输出的特征通过分类器对故障进行诊断分类。在实验室模拟采集的不同数据集上进行实验,结果表明:基于深度卷积网络的未知复合故障诊断模型与基于改进CDCGAN的复合故障诊断方法