论文部分内容阅读
介绍了神经网络动态建模方法,以车削加工过程为例,用一个带单隐层的反向传播(BP)网络对非线性的加工过程进行了辨识研究,并将神经网络模型的跟踪响应与参数模型的跟踪响应作了对比分析。仿真结果表明,神经网络是建立非线性加工过程模型的一种有效方法。
The method of dynamic modeling of neural network is introduced. Taking a turning process as an example, a nonlinear backpropagation (BP) network with a single hidden layer is used to identify the nonlinear machining process. The tracking response of the neural network model and Parametric model of the tracking response made a comparative analysis. The simulation results show that the neural network is an effective method to establish the nonlinear machining process model.