论文部分内容阅读
采用径向基RBF神经网络对网络流量数据的时间序列进行建模与预测。采用传统的学习算法对RBF网络训练时,对网络流量数据容易出现过拟合现象,提出了自适应量子粒子群优化AQPSO算法,用于训练RBF神经网络的基函数中心和宽度,并结合最小二乘法计算网络权值,改善了RBF神经网络的泛化能力。实验结果表明,采用AQPSO算法获得的RBF神经网络模型具有泛化能力强、稳定性良好的特点,在网络流量预测中有一定的实用价值。