论文部分内容阅读
尽管卷积神经网络在实现单帧图像超分辨率的准确性和速度方面取得一定突破,但仍然存在重建结果细节不明显,过于光滑等中心问题。针对这一中心问题,提出一种基于单帧图像的耦合生成式对抗超分辨率重建算法,定义的生成器和判别器分别采用深度残差网络和深度卷积网络,将自注意力增强卷积应用到生成器网络中,为了增强生成图像的质量和训练过程的稳定,对生成器和判别器的学习能力进行平衡,使用相对判别器计算来自对抗神经网络的损失值。主流超分辨重建算法在Set5、Set4、BSD100经典数据集上进行对比,实验结果表明,提出的算法