论文部分内容阅读
【摘 要】培养学生的思维能力是现代学校教育的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力、勇于创新的精神。小学数学教学担负着培养学生思维能力的重要任务,本文就如何培养学生思维能力谈几点个人的看法。
【关键词】小学数学;培养;思维能力
【中图分类号】G622 【文献标识码】A
【文章编号】2095-3089(2018)22-0239-01
一、激发求知欲,引发学生的思维
随着年龄的增加,有意注意也占有一定的比例。如果能很好的利用有意注意,并能使其保持较长的时间,就能提高学生积极思维的参与度。因此,课堂上应努力激发学生求知欲,引发思维。演示可以由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。如教学比较两个角的大小时,让学生先画一个角后,我让学生思考:怎样比较所画的角的大小。让学生四人一组操作、讨论,在动手操作的基础上,学生找到了方法,而后让个别学生上台在投影上演示,把画的角用重叠的方法进行比较,既提高了兴趣,又提高了思维能力。
二、 摆脱思维定势,培养学生的发散思维
研究表明:无意识的思维活动之所以能产生“全新”的思想,其根本原因也就在于这种思维活动不受任何有意识思维所具有的条条框框的束缚,从而就可最为自由地去作出各种可能的组合。可见,要培养学生的数学直觉能力,必须开拓学生的思想,激活学生的发散思维,使学生在学习过程中不把思想集中在某一解答或某一方法上。
教学中,培养学生的发散思维,基本途径有两条:第一,教师应鼓励学生标新立异,从不同的角度去思考同一个内容。如在教学应用题时,鼓励学生进行“一题多解”;在计算中,提倡计算方法多样化;在几何图形的求积中,找不同的解法等。第二,应适当设计开放性问题。开放性问题极具挑战性,可以给学生提供思维的空间,如:如果动物园的门票每张10元,某校组织48名同学去公园玩,带500元钱够不够?这一类问题具有现实意义,但又不能套用哪一类问题的解题规律,从而得出不同的解题方法。通过练习,培养学生思维的灵活性、变通性和独创性,使他们能突破传统思想的束缚,摆脱原有知识的羁绊和思维定势的禁锢,增加数学直觉的能力。
三、培养直觉思维的能力
教学中,怎样才能有效地培养或发展学生的直觉思维能力呢?根据数学直觉思维产生的条件和数学直觉思维的特性,可以从下面几个方面着手培养学生的直觉思维能力。
1.创设开放的教学环境,让学生大胆猜测。
回顾过去的数学教学强调逻辑和精确,课本上很少有估计、猜测。猜测从心理学的角度看,是直觉思维的一部分,它具有快速、直接、跳跃的特点,是学生有方向的猜想和判断,是创造性思维的重要形式和表现,在教学中培养学生的猜测意识,引导学生进行大胆的猜想,正是培养学生直觉思维的重要方式。
在学生学习了同分母分数相加减之后,学习异分母分数的加减法,教师可以引导学生猜想:异分母分数相加减会是怎样的?它会与同分母分数加减法有什么联系?在教学正方形的周长时,让学生猜想:正方形的周长可能与什么有关?有什么关系?用猜想贯穿于课堂教学。这样不仅能调动学生的学习情趣,引导学生积极探索、主动学习,而且学生的数学直觉能力也在猜测中获得有效发展。学生的猜测可能是经过周密思维符合逻辑性的;但更可能是稚嫩无序的、甚至是错误的。作为教师始终应引导学生大胆猜测,当学生猜错时也不要泼冷水,不然就会扼杀学生的数学直觉。因此,直觉的产生首先需要有宽松开放的教学环境,让学生感到心理安全和心理自由,从而能放开胆量,敢想、敢说、敢猜。
2.留足充分的探索时空,让学生主动感悟。
“悟”是学生主动探求知识的一种心理活动,是外在知识内化的重要途径。学生只有用心去感悟,才能自己发现知识的内在规律,做到融会贯通,达到“真懂”、“彻悟”的境界,提高数学直觉能力。如在教学“商不变的规律”时,先提供一组算式让学生通过计算,发现它们的商都是3,于是觉得非常奇怪,产生探索的欲望,并试图找出其中的规律,这时再让学生根据已给出的式子,自己编出商是7的算式。学生通过积极主动的探索,从人人动手编题中体验到了除法中各数间的变化,悟出商不变的规律,教师应当提供机会、创设情境,引导学生主动探索,使学生在自己探索的过程中真正“悟”透数学知识。当学生使所学内容的整个知识系统在头脑中形成非常直观浅显,非常透彻明白的东西时,也就达到了“直觉地把握”。
3.摆脱禁锢的思维定势,让学生的思维走向发散。
四、培养思维能力要贯穿在各部分内容的教学中
在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。
总之,在小学数学教学中,教师要以学生为本,既应加强学生形象思维能力的培养,又应加强学生直觉思维能力的训练。这样,不仅可以优化课堂教学,提高教学效率,而且能够激发学生强烈的求知欲,培养学生积极向上的探索进取精神,使学生在参与学习的过程中,既学到知识,又增长智慧,让学生充分体验参与之景,探究之趣,成功之乐,全面提高数学素养。
参考文献
[1]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102.
[2]叶澜.教师角色与教师发展新探[M].北京:教育科学出版社,2001.
[3]陈永明.教师教育研究[M].广东:广东高等教育出版社,2003.
[4]余文森,劉冬岩.有效教学的基本策略[M].福建教育出版社,2013.
[5]陶行知.中国教育改造[J].北京,东方出版社,1996.
【关键词】小学数学;培养;思维能力
【中图分类号】G622 【文献标识码】A
【文章编号】2095-3089(2018)22-0239-01
一、激发求知欲,引发学生的思维
随着年龄的增加,有意注意也占有一定的比例。如果能很好的利用有意注意,并能使其保持较长的时间,就能提高学生积极思维的参与度。因此,课堂上应努力激发学生求知欲,引发思维。演示可以由静变动,能更好吸引学生的注意,起到直观的效果;操作是一种辅助的教学手段,恰当运用直观操作,师生互动,让学生运用多种感官参与学习。如教学比较两个角的大小时,让学生先画一个角后,我让学生思考:怎样比较所画的角的大小。让学生四人一组操作、讨论,在动手操作的基础上,学生找到了方法,而后让个别学生上台在投影上演示,把画的角用重叠的方法进行比较,既提高了兴趣,又提高了思维能力。
二、 摆脱思维定势,培养学生的发散思维
研究表明:无意识的思维活动之所以能产生“全新”的思想,其根本原因也就在于这种思维活动不受任何有意识思维所具有的条条框框的束缚,从而就可最为自由地去作出各种可能的组合。可见,要培养学生的数学直觉能力,必须开拓学生的思想,激活学生的发散思维,使学生在学习过程中不把思想集中在某一解答或某一方法上。
教学中,培养学生的发散思维,基本途径有两条:第一,教师应鼓励学生标新立异,从不同的角度去思考同一个内容。如在教学应用题时,鼓励学生进行“一题多解”;在计算中,提倡计算方法多样化;在几何图形的求积中,找不同的解法等。第二,应适当设计开放性问题。开放性问题极具挑战性,可以给学生提供思维的空间,如:如果动物园的门票每张10元,某校组织48名同学去公园玩,带500元钱够不够?这一类问题具有现实意义,但又不能套用哪一类问题的解题规律,从而得出不同的解题方法。通过练习,培养学生思维的灵活性、变通性和独创性,使他们能突破传统思想的束缚,摆脱原有知识的羁绊和思维定势的禁锢,增加数学直觉的能力。
三、培养直觉思维的能力
教学中,怎样才能有效地培养或发展学生的直觉思维能力呢?根据数学直觉思维产生的条件和数学直觉思维的特性,可以从下面几个方面着手培养学生的直觉思维能力。
1.创设开放的教学环境,让学生大胆猜测。
回顾过去的数学教学强调逻辑和精确,课本上很少有估计、猜测。猜测从心理学的角度看,是直觉思维的一部分,它具有快速、直接、跳跃的特点,是学生有方向的猜想和判断,是创造性思维的重要形式和表现,在教学中培养学生的猜测意识,引导学生进行大胆的猜想,正是培养学生直觉思维的重要方式。
在学生学习了同分母分数相加减之后,学习异分母分数的加减法,教师可以引导学生猜想:异分母分数相加减会是怎样的?它会与同分母分数加减法有什么联系?在教学正方形的周长时,让学生猜想:正方形的周长可能与什么有关?有什么关系?用猜想贯穿于课堂教学。这样不仅能调动学生的学习情趣,引导学生积极探索、主动学习,而且学生的数学直觉能力也在猜测中获得有效发展。学生的猜测可能是经过周密思维符合逻辑性的;但更可能是稚嫩无序的、甚至是错误的。作为教师始终应引导学生大胆猜测,当学生猜错时也不要泼冷水,不然就会扼杀学生的数学直觉。因此,直觉的产生首先需要有宽松开放的教学环境,让学生感到心理安全和心理自由,从而能放开胆量,敢想、敢说、敢猜。
2.留足充分的探索时空,让学生主动感悟。
“悟”是学生主动探求知识的一种心理活动,是外在知识内化的重要途径。学生只有用心去感悟,才能自己发现知识的内在规律,做到融会贯通,达到“真懂”、“彻悟”的境界,提高数学直觉能力。如在教学“商不变的规律”时,先提供一组算式让学生通过计算,发现它们的商都是3,于是觉得非常奇怪,产生探索的欲望,并试图找出其中的规律,这时再让学生根据已给出的式子,自己编出商是7的算式。学生通过积极主动的探索,从人人动手编题中体验到了除法中各数间的变化,悟出商不变的规律,教师应当提供机会、创设情境,引导学生主动探索,使学生在自己探索的过程中真正“悟”透数学知识。当学生使所学内容的整个知识系统在头脑中形成非常直观浅显,非常透彻明白的东西时,也就达到了“直觉地把握”。
3.摆脱禁锢的思维定势,让学生的思维走向发散。
四、培养思维能力要贯穿在各部分内容的教学中
在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。
总之,在小学数学教学中,教师要以学生为本,既应加强学生形象思维能力的培养,又应加强学生直觉思维能力的训练。这样,不仅可以优化课堂教学,提高教学效率,而且能够激发学生强烈的求知欲,培养学生积极向上的探索进取精神,使学生在参与学习的过程中,既学到知识,又增长智慧,让学生充分体验参与之景,探究之趣,成功之乐,全面提高数学素养。
参考文献
[1]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102.
[2]叶澜.教师角色与教师发展新探[M].北京:教育科学出版社,2001.
[3]陈永明.教师教育研究[M].广东:广东高等教育出版社,2003.
[4]余文森,劉冬岩.有效教学的基本策略[M].福建教育出版社,2013.
[5]陶行知.中国教育改造[J].北京,东方出版社,1996.