结合属性结构的图卷积实体对齐算法

来源 :计算机应用研究 | 被引量 : 1次 | 上传用户:hjlcd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有的基于图卷积的实体对齐算法大多基于实体之间的关系结构构建,没有有效利用实体的属性结构信息,为此提出一种结合实体属性结构信息的图卷积实体对齐方法。该方法在实体以属性连接起来的知识图上进行卷积,学习实体基于属性结构的嵌入,再结合实体基于关系结构的嵌入来比较实体的相似性。在真实数据集上的实验结果表明提出的方法优于基准方法,从而为实体对齐提供了一种新的可能。
其他文献
针对经典的单阶段多目标检测算法SSD对小目标物检测效果差的问题,提出DF-SSD算法,其核心技术贡献包括基于反卷积与特征融合的方法和改进后的先验框尺寸计算算法。反卷积与特征融合能够增加浅层特征层的语义信息。改进后的先验框尺寸计算引入了数据集的特点,能有效利用每一个先验框进行训练和预测。改进后的方法 DF-SSD与基于SSD改进的R-SSD和RSSD模型相比,具有较高的检测准确率。同时,DF-SSD