论文部分内容阅读
针对目前基于机器视觉的棉花异性纤维在线检测的分类精度低和检测速度慢的问题,提出一种高效的棉花异性纤维混合特征选择方法。首先利用费舍尔评分滤波式特征选择方法过滤噪声特征,然后利用蚁群优化从已去噪的特征集中选取最优特征子集。提出的方法与费舍尔评分方法及基于蚁群优化的特征选择方法进行了对比分析,结果表明提出的方法选出的最优特征集仅包含12个特征,分类准确度达到93.45%,对一幅4000×500像素的彩色图像的在线检测时间仅为0.8116秒。所提方法能选择出具有较高分类精度、较小特征数量的优化特征子集,可