【摘 要】
:
Broad absorption spectra with efficient generation and separation of available charge carriers are indispensable requirements for promising semiconductor-based photocatalysts to achieve the ultimate goal of solar-to-fuel conversion.Here,Cu3-xSnS4 (x =0-0.
【机 构】
:
Shanghai Electrochemical Energy Devices Research Center,School of Chemistry and Chemical Engineering
论文部分内容阅读
Broad absorption spectra with efficient generation and separation of available charge carriers are indispensable requirements for promising semiconductor-based photocatalysts to achieve the ultimate goal of solar-to-fuel conversion.Here,Cu3-xSnS4 (x =0-0.8)with copper vacancies have been prepared and fabricated via solvothermal process.The obtained copper vacancy materials have extended light absorption from ultraviolet to near-infrared-Ⅱ region for its significant plasmonic effects.Time-resolved photoluminescence shows that the vacancies can simultaneously optimize charge carrier dynamics to boost the generation of long-lived active electrons for photocatalytic reduction.Density functional theory calculations and electrochemical characterizations further revealed that copper vacancies in Cu3-xSnS4 tend to enhance hydrogen\'s adsorption energy with an obvious decrease in its H2 evolution reaction (HER) overpotential.Furthermore,without any Ioadings,the H2 production rate was measured to be 9.5 mmol·h-1·g-1.The apparent quantum yield was measured to be 27% for wavelength λ > 380 nm.The solar energy conversion efficiency was measured to be 6.5% under visible-near infrared (vis-NIR) (λ > 420 nm).
其他文献
本文针对人物图像,提出一种根据人类视觉及审美习惯来评价其美学价值的可计算方法,从技术特征、感知特征和社会特征3个方面对图像进行特征提取并作为评价指标,融合各指标建立美感评价模型,采用在线调研的方式确定各指标的影响因子,从而实现人物图像美感自动评价.在香港中文大学人物图像美学质量评价数据集(CUHKPQ)上的实验测试结果表明,本文提出的方法准确率可达到98.08%,具有一定的有效性,并且各指标的评价结果清晰直观,可以从各角度对提高图像美学质量起到指导作用.通过将模型集成到手机应用程序中,能够对用户上传的多张
目标情感分类是是一种细粒度的情感分类任务,针对人工生成特征模型成本高且不能捕捉上下文语义、传统循环神经网络模型训练时间长等问题,设计了一种基于距离感知的目标情感分类模型.通过距离感知窗口对目标词与邻近词之间的距离信息进行建模,结合词嵌入技术,分别对输入文本和距离信息建立向量矩阵,使用卷积神经网络提取特征,将文本语义特征和距离特征结合,输入到分类层进行目标情感分类.最后在SemEval2014笔记本电脑和餐厅两个数据集上进行实验,取得了比基于循环神经网络生成特征的模型和利用外部语法分析器生成特征的模型更好的
The development of rechargeable lithium-ion batteries (LIBs) is being driven by the ever-increasing demand for high energy density and excellent rate performance.Charge transfer kinetics and polarization theory,considered as basic principles for charge re
Black phosphorus (BP),a promising two-dimensional layer material,has attracted increasing attention due to its high carrier mobility,thickness-dependent tunable bandgap,in-plane anisotropy,and other advantageous characteristics.Because of these excellent
The depletion of energy and increasing environmental pressure have become one of the main challenges in the world today.Synthetic high-efficiency catalysts bring hope for efficient conversion of energy and effective treatment of pollutants,especially,sing
Professor Yitai Qian,a pioneer in nanomaterials,an academician of the Chinese Academy of Sciences (CAS) and a professor at the University of Science and Technology of China (USTC),has committed his entire career to the development of solid-state chemistry
Biochemical reactions in vivo occur at the temperature usually lower than that in vitro,however the underlying mechanism still remains a challenge.Inspired by our recent studies of adenosine triphosphate (ATP) releasing photons to resonantly drive DNA rep
利用固体废弃物广玉兰树叶,经过低温慢速热解制备成生物炭,并通过MgCl2改性得到改性生物炭(MBC).通过扫描电子显微镜(SEM)、X-射线能量色散谱仪(EDS)、X-射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、X-射线光电子能谱(XPS)等,对改性广玉兰叶生物炭进行了表征.研究结果表明:MgO负载到生物炭表面,MBC对磷的吸附符合弗罗因德得希等温吸附模型及准二级动力学模型.理论上最大吸附量可达37.5 mg·L-1.MBC对磷的吸附机理主要包括配体交换、静电相互作用和沉淀.
腋窝淋巴结是乳腺癌常见的转移位置,超声图像是腋窝淋巴结转移的主要检查方式之一.当前,腋窝淋巴结超声图像分割因其自身的噪声多、特征复杂等特点,使得其分割准确率还有待提高.本文提出了一种基于腋窝超声的新型分割算法U-net-MDSC,该算法采用解码和编码的方式自动分割腋窝淋巴结,针对超声图像尺寸小、分辨率低的问题,减少了网络中不必要的下采样结构;针对编码过程中语义信息丢失较多的特点,采用了密集跳连接结构来充分提取图像特征,可提供淋巴结的定位、大小等信息.为检验算法的有效性,本文将提出的算法在356个病人的腋窝
贝叶斯分类算法是一种基于概率统计理论的有监督学习算法,常被用于分类问题中.本文将量子计数与经典贝叶斯分类算法相结合,提出一种新的量子贝叶斯分类算法.通过量子随机访问存储器制备所需的量子态,使用oracle进行相位翻转并构造与之所对应的操作算子,在操作算子的本征态空间上重新描述量子态,借助辅助粒子进行相位估计,投影测量后即可高效地计算出贝叶斯分类所需的数据,实现量子贝叶斯分类算法.该算法在低维特征空间中与经典算法相比有着指数级加速.